ASTM D 1143/D 1143M—07e1 Test Method for Piles Under Static Axial Compressive Load (PDF Download)

Item #: 8959P329
Price: $65.00
Member Price: $65.00
Member Savings: $0.00
$65.00
$65.00

1.1 The test methods described in this standard measure the axial deflection of a vertical or inclined deep foundation when loaded in static axial compression. These methods apply to all deep foundations, referred to herein as piles, that function in a manner similar to driven piles or castinplace piles, regardless of their method of installation, and may be used for testing single piles or pile groups. The test results may not represent the long-term performance of a deep foundation.

1.2 This standard provides minimum requirements for testing deep foundations under static axial compressive load. Plans, specifications, and/or provisions prepared by a qualified engineer may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in responsible charge of the foundation design, referred to herein as the Engineer, shall approve any deviations, deletions, or additions to the requirements of this standard.

1.3 This standard allows the following test procedures:

Procedure A

Quick Test

Procedure B

Maintained Test (optional)

Procedure C

Loading in Excess of Maintained Test (optional)

Procedure D

Constant Time Interval Test (optional)

Procedure E

Constant Rate of Penetration Test (optional)

Procedure F

Constant Movement Increment Test (optional)

Procedure G

Cyclic Loading Test (optional)

1.4 Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the Engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.

1.5 A qualified geotechnical engineer should interpret the test results obtained from the procedures of this standard so as to predict the actual performance and adequacy of piles used in the constructed foundation. See Appendix X1 for comments regarding some of the factors influencing the interpretation of test results.

1.6 A qualified engineer shall design and approve all loading apparatus, loaded members, support frames, and test procedures. The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. This standard also includes illustrations and appendices intended only for explanatory or advisory use.

1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.8 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F=ma) calculations are involved.

1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026.

1.10 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.

1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

This standard is referenced in the 2012 International Building Code®.

More Information
Description:

1.1 The test methods described in this standard measure the axial deflection of a vertical or inclined deep foundation when loaded in static axial compression. These methods apply to all deep foundations, referred to herein as piles, that function in a manner similar to driven piles or castinplace piles, regardless of their method of installation, and may be used for testing single piles or pile groups. The test results may not represent the long-term performance of a deep foundation.

1.2 This standard provides minimum requirements for testing deep foundations under static axial compressive load. Plans, specifications, and/or provisions prepared by a qualified engineer may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in responsible charge of the foundation design, referred to herein as the Engineer, shall approve any deviations, deletions, or additions to the requirements of this standard.

1.3 This standard allows the following test procedures:

Procedure A

Quick Test

Procedure B

Maintained Test (optional)

Procedure C

Loading in Excess of Maintained Test (optional)

Procedure D

Constant Time Interval Test (optional)

Procedure E

Constant Rate of Penetration Test (optional)

Procedure F

Constant Movement Increment Test (optional)

Procedure G

Cyclic Loading Test (optional)

1.4 Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the Engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.

1.5 A qualified geotechnical engineer should interpret the test results obtained from the procedures of this standard so as to predict the actual performance and adequacy of piles used in the constructed foundation. See Appendix X1 for comments regarding some of the factors influencing the interpretation of test results.

1.6 A qualified engineer shall design and approve all loading apparatus, loaded members, support frames, and test procedures. The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. This standard also includes illustrations and appendices intended only for explanatory or advisory use.

1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.8 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F=ma) calculations are involved.

1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026.

1.10 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.

1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

This standard is referenced in the 2012 International Building Code®.

Pages 15
Code Year 2012
Publisher ASTM International
Language English
This site has been tested and optimized for Firefox, Safari, Chrome and Internet Explorer 10+. We recommend users of early versions of Internet Explorer to update to Version 11 or later.
Search engine powered by ElasticSuite