ENGINEERING GUIDE: FIRE SAFETY FOR VERY TALL BUILDINGS
Task Group on Fire Safety in Very Tall Buildings

TASK GROUP ON FIRE SAFETY IN VERY TALL BUILDINGS

CHAIRMAN

James Quiter, P.E., FSFPE
Arup

MEMBERS

Farid Alfawakhiri, Ph.D.
American Iron and Steel Institute

Fatma Amer, P.E.
NYC Dept. of Buildings

Jean-Michel Attlan
Accor

Carl Baldassarra, P.E., FSFPE
Rolf Jensen & Associates

James Begley, P.E.
Terp Consulting

Justin Biller, P.E.
AECOM

Adam Bittern
University of Edinburgh

David Bowman, P.E.
International Code Council

Randal Brown, P.E., P.Eng, FSFPE
Randal Brown & Associates Ltd.

Shawn Cai, P.E.
Giovanni Schulman Associates

David Chan, Ph.D.
Hong Kong Institute of Vocational Education

Michael Daly, P.E.
FM Global

John Devin, P.E.
AON Risk Solutions

Roy Elliott
International Code Council

Douglas Evans, P.E., FSFPE
Clark County Building Department

Jeff Harper, P.E., FSFPE
Rolf Jensen & Associates

Carl Keogh
Buro Happold

William Koffel, P.E., FSFPE
Koffel Associates

James Lord
Bureau of Alcohol, Tobacco and Firearms

Jeff Maddox, P.E.
The Protection Consultants

Joe McElvaney, P.E.
City of Phoenix Fire Department

Brian Meacham, Ph.D., P.E., FSFPE
Worcester Polytechnic Institute

Daniel O’Connor, P.E., FSFPE
AON Risk Solutions

Tod Ossmann, P.E.
Willis Group

Beth Tubbs, P.E., FSFPE
International Code Council

Allyn Vaughn, P.E., FSFPE
JBA Consulting Engineers

William Webb, P.E., FSFPE
Webb Fire Protection Consultants

Armin Wolski, P.E.
ARUP

STAFF

Morgan J. Hurley, P.E., FSFPE
Society of Fire Protection Engineers

Note: This Task Group was formed by the SFPE under the SFPE Guide and Engineering Practice Document Development Procedures. The task group coordinated the development and drafting of this guide.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>History</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Components of Performance-based Design</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>International Practices</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Unique features of Tall Buildings</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Hazard, Risk and Decision Analysis in</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Very Tall Building Design</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Integration of Building Systems</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Reliability of Systems</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Situation Awareness</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>Emergency Egress</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Fire Resistance</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>Facades</td>
<td>107</td>
</tr>
<tr>
<td>13</td>
<td>Suppression</td>
<td>117</td>
</tr>
<tr>
<td>14</td>
<td>Detection and Alarm</td>
<td>127</td>
</tr>
<tr>
<td>15</td>
<td>Smoke Control</td>
<td>139</td>
</tr>
<tr>
<td>16</td>
<td>First Responder Issues</td>
<td>159</td>
</tr>
<tr>
<td>17</td>
<td>Electrical</td>
<td>169</td>
</tr>
<tr>
<td>18</td>
<td>Buildings Under Construction</td>
<td>175</td>
</tr>
<tr>
<td>19</td>
<td>Building Life Cycle Management</td>
<td>183</td>
</tr>
<tr>
<td>20</td>
<td>Commissioning</td>
<td>187</td>
</tr>
<tr>
<td>21</td>
<td>Inspection, Testing and Maintenance</td>
<td>191</td>
</tr>
<tr>
<td>22</td>
<td>Summary</td>
<td>195</td>
</tr>
<tr>
<td>23</td>
<td>Appendix - Recommended Readings</td>
<td>197</td>
</tr>
<tr>
<td>24</td>
<td>References</td>
<td>199</td>
</tr>
</tbody>
</table>
PREFACE

The performance history of very tall buildings, while extremely successful, has not been without major incidents causing injury and death. The modern model building codes, including the International Building Code® (IBC®), have made major progress in addressing unique issues of design and construction in very tall buildings based on scientific research and lessons learned from catastrophic events.

From a historic perspective, the legacy model building codes, Standard Building Code®, BOCA National Building Code®, and the Uniform Building Code®, included elementary high-rise provisions in their early to mid-1970s editions that evolved over time to the current edition of the IBC®, which addresses many features such as separation of egress routes, additional egress shaft requirements, fire department and occupant evacuation elevators, egress markings, stairway structural integrity and higher level of protection for structural members. However, the current building codes still may not provide comprehensive performance solutions or adequately address other risks inherent in “very tall” or “super tall” buildings.

The complexity and unique challenges of today’s very tall buildings, coupled with sustainability goals of material, energy, water and resource savings, have created an environment where comprehensive performance-based solutions have become a necessity. Such is the reason for the Society of Fire Protection Engineers (SFPE) and the International Code Council (ICC) embarking on the development of this valuable guide in a joint partnership.

This guide is not intended to replace the adopted building and fire codes of jurisdictions; rather, it is intended to complement such codes and serves as an added tool for all those involved in the design, review, construction, inspection and commissioning of new or existing very tall buildings.
About the Society of Fire Protection Engineers
The Society of Fire Protection Engineers was established in 1950 and incorporated as an independent organization in 1971. It is the professional society representing those practicing in the field of fire protection engineering. The Society has over 4,500 members globally and over 60 regional chapters.

The purpose of the Society is to advance the science and practice of fire protection engineering and its allied fields, to maintain a high ethical standard among its members and to foster fire protection engineering education.

7315 Wisconsin Avenue, Suite 620E
Bethesda, MD 20814
USA
1-301-718-2910
www.sfpe.org

About the International Code Council
The International Code Council is a member-focused association. It is dedicated to developing model codes and standards used in the design, build and compliance process to construct safe, sustainable, affordable and resilient structures. Most U.S. communities and many global markets choose the International Codes.® ICC Evaluation Service (ICC-ES®) is the industry leader in performing technical evaluations for code compliance fostering safe and sustainable design and construction.

Headquarters: 500 New Jersey Avenue, NW, 6th Floor, Washington, DC 20001-2070
District Offices: Birmingham, AL; Chicago, IL; Los Angeles, CA
1-888-422-7233
www.iccsafe.org