CHAPTER 7*

FIREF AND SMOKE PROTECTION FEATURES

SECTION 701
GENERAL

701.1 Scope. The provisions of this chapter shall govern the materials, systems and assemblies used for structural fire resistance and fire-resistance-rated construction separation of adjacent spaces to safeguard against the spread of fire and smoke within a building and the spread of fire to or from buildings.

701.2 Multiple use fire assemblies. Fire assemblies that serve multiple purposes in a building shall comply with all of the requirements that are applicable for each of the individual fire assemblies.

SECTION 713
SHAFT ENCLOSURES

713.1 General. The provisions of this section shall apply to shafts required to protect openings and penetrations through floor/ceiling and roof/ceiling assemblies. Exit access stairways and exit access ramps shall be protected in accordance with the applicable provisions of Section 1009. Interior exit stairways and interior exit ramps shall be protected in accordance with the requirements of Section 1022.

713.2 Construction. Shaft enclosures shall be constructed as fire barriers in accordance with Section 707 or horizontal assemblies in accordance with Section 711, or both.

713.3 Materials. The shaft enclosure shall be of materials permitted by the building type of construction.

SECTION 714
PENETRATIONS

714.1 Scope. The provisions of this section shall govern the materials and methods of construction used to protect through penetrations and membrane penetrations of horizontal assemblies and fire-resistance-rated wall assemblies.

714.3 Fire-resistance-rated walls. Penetrations into or through fire walls, fire barriers, smoke barrier walls and fire partitions shall comply with Sections 714.3.1 through 714.3.3. Penetrations in smoke barrier walls shall comply with Section 714.5.

714.3.1 Through penetrations. Through penetrations of fire-resistance-rated walls shall comply with Section 714.3.1.1 or 714.3.1.2.

Exception: Where the penetrating items are steel, ferrous or copper pipes, tubes or conduits, the annular space between the penetrating item and the fire-resistance-rated wall is permitted to be protected as follows:

1. In concrete or masonry walls where the penetrating item is a maximum 6-inch (152 mm) nominal diameter and the area of the opening through the wall does not exceed 144 square inches (0.0929 m²), concrete, grout or mortar is permitted where it is installed the full thickness of the wall or the thickness required to maintain the fire-resistance rating; or

2. The material used to fill the annular space shall prevent the passage of flame and hot gases sufficient to ignite cotton waste when subjected to ASTM E119 or UL 263 time-temperature fire conditions under a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water at the location of the penetration for the time period equivalent to the fire-resistance rating of the construction penetrated.

SECTION 721
PRESCRIPTIVE FIRE RESISTANCE

721.1 General. The provisions of this section contain prescriptive details of fire-resistance-rated building elements, components or assemblies. The materials of construction listed in Tables 721.1(1), 721.1(2), and 721.1(3) shall be assumed to have the fire-resistance ratings prescribed therein. Where materials that change the capacity for heat dissipation are incorporated into a fire-resistance-rated assembly, fire test results or other substantiating data shall be made available to the building official to show that the required fire-resistance-rating time period is not reduced.

721.1.2 Unit masonry protection. Where required, metal ties shall be embedded in bed joints of unit masonry for protection of steel columns. Such ties shall be as set forth in Table 721.1(1) or be equivalent thereto.

* Only portions of this section are shown which are particularly applicable to masonry construction. For additional information see the CBC.
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS\(^a, o, p\)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACE(^b) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>1. Brick of clay or shale</td>
<td>1-1.1</td>
<td>Solid brick of clay or shale.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1-1.2</td>
<td>Hollow brick, not filled.</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>1-1.3</td>
<td>Hollow brick unit wall, grout or filled with perlite vermiculite or expanded shale aggregate.</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>1-2.1</td>
<td>4(”) nominal thick units at least 75 percent solid backed with a hat-shaped metal furring channel 7/16(”) thick formed from 0.021(”) sheet metal attached to the brick wall on 24(”) centers with approved fasteners, and 1(\frac{1}{2})(”) Type X gypsum wallboard attached to the metal furring strips with 1(”)-long Type S screws spaced 8(”) on center.</td>
<td>—</td>
</tr>
<tr>
<td>2. Combination of clay brick and load-bearing hollow clay tile</td>
<td>2-1.1</td>
<td>4(”) solid brick and 4(”) tile (at least 40 percent solid).</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2-1.2</td>
<td>4(”) solid brick and 8(”) tile (at least 40 percent solid).</td>
<td>12</td>
</tr>
<tr>
<td>3. Concrete masonry units</td>
<td>3-1.1(^f, g)</td>
<td>Expanded slag or pumice.</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>3-1.2(^f)</td>
<td>Expanded clay, shale or slate.</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>3-1.3(^f)</td>
<td>Limestone, cinders or air-cooled slag.</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>3-1.4(^f)</td>
<td>Calcareous or siliceous gravel.</td>
<td>6.2</td>
</tr>
<tr>
<td>4. Solid concrete(^h, i)</td>
<td>4-1.1</td>
<td>Siliceous aggregate concrete.</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbonate aggregate concrete.</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand-lightweight concrete.</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lightweight concrete.</td>
<td>5.1</td>
</tr>
<tr>
<td>5. Glazed or unglazed facing tile, nonload-bearing</td>
<td>5-1.1</td>
<td>One 2(”) unit cored 15 percent maximum and one 4(”) unit cored 25 percent maximum with 7/16(”) mortar-filled collar joint. Unit positions reversed in alternate courses.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.2</td>
<td>One 2(”) unit cored 15 percent maximum and one 4(”) unit cored 40 percent maximum with 7/16(”) mortar-filled collar joint. Unit positions side with 7/16(”) gypsum plaster. Two wythes tied together every fourth course with No. 22 gage corrugated metal ties.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.3</td>
<td>One unit with three cells in wall thickness, cored 29 percent maximum.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.4</td>
<td>One 2(”) unit cored 22 percent maximum and one 4(”) unit cored 41 percent maximum with 7/16(”) mortar-filled collar joint. Two wythes tied together every third course with 0.030(”) (No. 22 galvanized sheet steel gage) corrugated metal ties.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.5</td>
<td>One 4(”) unit cored 25 percent maximum with 7/16(”) gypsum plaster on one side.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.6</td>
<td>One 4(”) unit with two cells in wall thickness, cored 22 percent maximum.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.7</td>
<td>One 4(”) unit cored 30 percent maximum with 7/16(”) vermiculite gypsum plaster on one side.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.8</td>
<td>One 4(”) unit cored 39 percent maximum with 7/16(”) gypsum plaster on one side.</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.2 mm\(^2\), 1 cubic foot = 0.0283 m\(^3\).

a. Staples with equivalent holding power and penetration shall be permitted to be used as alternate fasteners to nails for attachment to wood framing.

b. Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net. Thickness shown for concrete masonry and clay masonry is equivalent thickness defined in Section 722.3.1 for concrete masonry and Section 722.4.1.1.1 for clay masonry. Where all cells are solid grouted or filled with silicone-treated perlite loose-fill insulation; vermiculite loose-fill insulation; or expanded clay, shale or slate lightweight aggregate, the equivalent thickness shall be the thickness of the block or brick using specified dimensions as defined in Chapter 21. Equivalent thickness may also include the thickness of applied plaster and lath or gypsum wallboard, where specified.

c. For units in which the net cross-sectional area of cored brick in any plane parallel to the surface containing the cores is at least 75 percent of the gross cross-sectional area measured in the same plane.

d. Shall be used for nonbearing purposes only.

e. The fire-resistance time period for concrete masonry units meeting the equivalent thicknesses required for a 2-hour fire-resistance rating in Item 3, and having a thickness of not less than 7/8\(”\) inches is 4 hours when cores which are not grouted are filled with silicone-treated perlite loose-fill insulation; vermiculite loose-fill insulation; or expanded clay, shale or slate lightweight aggregate, sand or slag having a maximum particle size of 7/8\(”\) inch.

f. The fire-resistance rating of concrete masonry units composed of a combination of aggregate types or where plaster is applied directly to the concrete masonry shall be determined in accordance with ACI 216.1/TMS 0216. Lightweight aggregates shall have a maximum combined density of 65 pounds per cubic foot.

g. The fire-resistance rating of concrete masonry units composed of a combination of aggregate types or where plaster is applied directly to the concrete masonry shall be determined in accordance with ACI 216.1/TMS 0216. Lightweight aggregates shall have a maximum combined density of 65 pounds per cubic foot.

h. For load-bearing masonry walls, furring channel 3/4\(”\) thick formed from 0.021\(”\) sheet metal attached to the brick wall wythes tied together every second course with approved fasteners, and 1\(”\)-long Type S screws spaced 8\(”\) on center.

i. NCMA TEK 5-8A shall be permitted for the design of fire walls.

p. NCMA TEK 5-8A shall be permitted for the design of fire walls.

\(^a\) To the metal furring strips with 1\(”\)-long Type S screws spaced 8\(”\) on center.

\(^b\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^c\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^d\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^e\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^f\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^g\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^h\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^i\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^j\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^k\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^l\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^m\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^n\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^o\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^p\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^q\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^r\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^s\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^t\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^u\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^v\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^w\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^x\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^y\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.

\(^z\) Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net.
SECTION 722
CALCULATED FIRE RESISTANCE

722.1 General. The provisions of this section contain procedures by which the fire resistance of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated fire resistance of concrete, concrete masonry and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated fire resistance of steel assemblies shall be permitted in accordance with Chapter 5 of ASCE 29. The calculated fire resistance of exposed wood members and wood deck shall be permitted in accordance with Chapter 16 of ANSI/AF&PA National Design Specification for Wood Construction (NDS).

722.3 Concrete masonry. The provisions of this section contain procedures by which the fire-resistance ratings of concrete masonry are established by calculations.

722.3.1 Equivalent thickness. The equivalent thickness of concrete masonry construction shall be determined in accordance with the provisions of this section.

722.3.1.1 Concrete masonry unit plus finishes. The equivalent thickness of concrete masonry assemblies, T_{ea}, shall be computed as the sum of the equivalent thickness of the concrete masonry unit, T_e, as determined by Section 722.3.1.2, 722.3.1.3, or 722.3.1.4, plus the equivalent thickness of finishes, T_{ef}, determined in accordance with Section 722.3.2:

$$T_{ea} = T_e + T_{ef} \quad (Equation \ 7-6)$$

722.3.1.2 Ungrouted or partially grouted construction. T_e shall be the value obtained for the concrete masonry unit determined in accordance with ASTM C140.

722.3.1.3 Solid grouted construction. The equivalent thickness, T_e, of solid grouted concrete masonry units is the actual thickness of the unit.

722.3.1.4 Airspaces and cells filled with loose-fill material. The equivalent thickness of completely filled hollow concrete masonry is the actual thickness of the unit when loose-fill materials are: sand, pea gravel, crushed stone, or slag that meet ASTM C33 requirements; pumice, scoria, expanded shale, expanded clay, expanded slate, expanded slag, expanded fly ash, or cinders that comply with ASTM C331; or perlite or vermiculite meeting the requirements of ASTM C549 and ASTM C516, respectively.

722.3.2 Concrete masonry walls. The fire-resistance rating of walls and partitions constructed of concrete masonry units shall be determined from Table 722.3.2. The rating shall be based on the equivalent thickness of the masonry and type of aggregate used.

722.3.2.1 Finish on nonfire-exposed side. Where plaster or gypsum wallboard is applied to the side of the wall not exposed to fire, the contribution of the finish to the total fire-resistance rating shall be determined as follows: The thickness of gypsum wallboard or plaster shall be corrected by multiplying the actual thickness of the finish by applicable factor determined from Table 722.2.1.4(1). This corrected thickness of finish shall be added to the equivalent thickness of masonry and the fire-resistance rating of the finish determined from Table 722.3.2.

722.3.2.2 Finish on fire-exposed side. Where plaster or gypsum wallboard is applied to the fire-exposed side of the wall, the contribution of the finish to the total fire-resistance rating shall be determined as follows: The time assigned to the finish as established by Table 722.2.1.4(2) shall be added to the fire-resistance rating determined in Section 722.3.2 for the masonry alone, or in Section

<table>
<thead>
<tr>
<th>TABLE 722.3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM EQUIVALENT THICKNESS (inches) OF BEARING OR NONBEARING CONCRETE MASONRY WALLSa,b,c,d</td>
</tr>
<tr>
<td>TYPE OF AGGREGATE</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Pumice or expanded slag</td>
</tr>
<tr>
<td>Expanded shale, clay or slate</td>
</tr>
<tr>
<td>Limestone, cinders or unexpanded slag</td>
</tr>
<tr>
<td>Calcareous or siliceous gravel</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Values between those shown in the table can be determined by direct interpolation.
b. Where combustible members are framed into the wall, the thickness of solid material between the end of each member and the opposite face of the wall, or between members set in from opposite sides, shall not be less than 93 percent of the thickness shown in the table.
c. Requirements of ASTM C55, ASTM C73, ASTM C90 or ASTM C744 shall apply.
d. Minimum required equivalent thickness corresponding to the hourly fire-resistance rating for units with a combination of aggregate shall be determined by linear interpolation based on the percent by volume of each aggregate used in manufacture.
722.3.2.1 for the masonry and finish on the nonfire-exposed side.

722.3.2.3 Nonsymmetrical assemblies. For a wall having no finish on one side or having different types or thicknesses of finish on each side, the calculation procedures of this section shall be performed twice, assuming either side of the wall to be the fire-exposed side. The fire-resistance rating of the wall shall not exceed the lower of the two values calculated.

Exception: For exterior walls with a fire separation distance greater than 5 feet (1524 mm) the fire shall be assumed to occur on the interior side only.

722.3.2.4 Minimum concrete masonry fire-resistance rating. Where the finish applied to a concrete masonry wall contributes to its fire-resistance rating, the masonry alone shall provide not less than one-half the total required fire-resistance rating.

722.3.2.5 Attachment of finishes. Installation of finishes shall be as follows:

1. Gypsum wallboard and gypsum lath applied to concrete masonry or concrete walls shall be secured to wood or steel furring members spaced not more than 16 inches (406 mm) on center (o.c.).
2. Gypsum wallboard shall be installed with the long dimension parallel to the furring members and shall have all joints finished.
3. Other aspects of the installation of finishes shall comply with the applicable provisions of Chapters 7 and 25.

722.3.3 Multiwythe masonry walls. The fire-resistance rating of wall assemblies constructed of multiple wythes of masonry materials shall be permitted to be based on the fire-resistance rating period of each wythe and the continuous airspace between each wythe in accordance with the following formula:

\[
R_A = (R_{1}^{0.59} + R_{2}^{0.59} + ... + R_{n}^{0.59} + A_1 + A_2 + ... + A_n)^{1.7}
\]

Equation 7-7

where:

\[R_{f} = \text{Fire-resistance rating of the assembly (hours).}\]
\[R_1, R_2, ..., R_n = \text{Fire-resistance rating of wythes for 1, 2, } n \text{ (hours), respectively.}\]
\[A_1, A_2, ..., A_n = 0.30, \text{ factor for each continuous airspace for 1, 2, } ...n \text{, respectively, having a depth of } \frac{1}{2} \text{ inch (12.7 mm) or more between wythes.}\]

722.3.4 Concrete masonry lintels. Fire-resistance ratings for concrete masonry lintels shall be determined based upon the nominal thickness of the lintel and the minimum thickness of concrete masonry or concrete, or any combination thereof, covering the main reinforcing bars, as determined according to Table 722.3.4, or by approved alternate methods.

TABLE 722.3.4

<table>
<thead>
<tr>
<th>NOMINAL WIDTH OF LINTEL (inches)</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1½</td>
</tr>
<tr>
<td>8</td>
<td>1½</td>
</tr>
<tr>
<td>10 or greater</td>
<td>1½</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

722.3.5 Concrete masonry columns. The fire-resistance rating of concrete masonry columns shall be determined based upon the least plan dimension of the column in accordance with Table 722.3.5 or by approved alternate methods.

TABLE 722.3.5

<table>
<thead>
<tr>
<th>MINIMUM DIMENSION OF CONCRETE MASONRY COLUMNS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE-RESISTANCE RATING (hours)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>8 inches</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

722.4 Clay brick and tile masonry. The provisions of this section contain procedures by which the fire-resistance ratings of clay brick and tile masonry are established by calculations.

722.4.1 Masonry walls. The fire-resistance rating of masonry walls shall be based upon the equivalent thickness as calculated in accordance with this section. The calculation shall take into account finishes applied to the wall and airspaces between wythes in multiwythe construction.

722.4.1.1 Equivalent thickness. The fire-resistance ratings of walls or partitions constructed of solid or hollow clay masonry units shall be determined from Table 722.4.1(1) or 722.4.1(2). The equivalent thickness of the clay masonry unit shall be determined by Equation 7-8 when using Table 722.4.1(1). The fire-resistance rating determined from Table 722.4.1(1) shall be permitted to be used in the calculated fire-resistance rating procedure in Section 722.4.2.

\[T_e = \frac{V_n}{LH}\]

Equation 7-8

where:

\[T_e = \text{The equivalent thickness of the clay masonry unit (inches).}\]
\[V_n = \text{The net volume of the clay masonry unit (inch3).}\]
\(L\) = The specified length of the clay masonry unit (inches).

\(H\) = The specified height of the clay masonry unit (inches).

722.4.1.1 Hollow clay units. The equivalent thickness, \(T_e\), shall be the value obtained for hollow clay units as determined in accordance with Equation 7-8. The net volume, \(V_n\), of the units shall be determined using the gross volume and percentage of void area determined in accordance with ASTM C67.

722.4.1.1.2 Solid grouted clay units. The equivalent thickness of solid grouted clay masonry units shall be taken as the actual thickness of the units.

722.4.1.1.3 Units with filled cores. The equivalent thickness of the hollow clay masonry units is the actual thickness of the unit when completely filled with loose-fill materials of: sand, pea gravel, crushed stone, or slag that meet ASTM C33 requirements; pumice, scoria, expanded shale, expanded clay, expanded slate, expanded slag, expanded fly ash, or cinders in compliance with ASTM C331; or perlite or vermiculite meeting the requirements of ASTM C549 and ASTM C516, respectively.

722.4.1.2 Plaster finishes. Where plaster is applied to the wall, the total fire-resistance rating shall be determined by the formula:

\[
R = (R_n^{0.59} + pl)^{1.7}
\]
(Equation 7-9)

where:

\(R\) = The fire-resistance rating of the assembly (hours).

<table>
<thead>
<tr>
<th>MATERIAL TYPE</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE RESISTANCEa,b,c (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid brick of clay or shaled</td>
<td>2.7</td>
</tr>
<tr>
<td>Hollow brick or tile of clay or shale, unfilled</td>
<td>2.3</td>
</tr>
<tr>
<td>Hollow brick or tile of clay or shale, grouted or filled with materials specified in Section 722.4.1.1.3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Equivalent thickness as determined from Section 722.4.1.1.
b. Calculated fire resistance between the hourly increments listed shall be determined by linear interpolation.
c. Where combustible members are framed in the wall, the thickness of solid material between the end of each member and the opposite face of the wall, or between members set in from opposite sides, shall not be less than 93 percent of the thickness shown.
d. For units in which the net cross-sectional area of cored brick in any plane parallel to the surface containing the cores is at least 75 percent of the gross cross-sectional area measured in the same plane.

<table>
<thead>
<tr>
<th>WALL OR PARTITION ASSEMBLY</th>
<th>PLASTER SIDE EXPOSED (hours)</th>
<th>BRICK FACED SIDE EXPOSED (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside facing of steel studs: wood fiberboard sheathing next to studs, (3/4)" airspace formed with (3/4)" x (1\frac{1}{8})" wood strips placed over the fiberboard and secured to the studs; metal or wire lath nailed to such strips, (3\frac{3}{4})" brick veneer held in place by filling (3/4)" airspace between the brick and lath with mortar. Inside facing of studs: (1/4)" unsanded gypsum plaster on metal or wire lath attached to (1\frac{1}{16})" wood strips secured to edges of the studs.</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Outside facing of steel studs: (1)" insulation board sheathing attached to studs, (1)" airspace, and (3\frac{3}{4})" brick veneer attached to steel frame with metal ties every 5th course. Inside facing of studs: (1/8)" sanded gypsum plaster (1:2 mix) applied on metal or wire lath attached directly to the studs.</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Same as above except use (1/8)" vermiculite–gypsum plaster or (1)" sanded gypsum plaster (1:2 mix) applied to metal or wire.</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Outside facing of steel studs: (1/2)" gypsum sheathing board, attached to studs, and (3\frac{3}{4})" brick veneer attached to steel frame with metal ties every 5th course. Inside facing of studs: (1/2)" sanded gypsum plaster (1:2 mix) applied to (1/2)" perforated gypsum lath securely attached to studs and having strips of metal lath 3 inches wide applied to all horizontal joints of gypsum lath.</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
The fire-resistance rating of the individual wall (hours).

pl = Coefficient for thickness of plaster.

Values for $R_n^{0.59}$ for use in Equation 7-9 are given in Table 722.4.1(3). Coefficients for thickness of plaster shall be selected from Table 722.4.1(4) based on the actual thickness of plaster applied to the wall or partition and whether one or two sides of the wall are plastered.

722.4.1.3 Multiwythe walls with airspace.
Where a continuous airspace separates multiple wythes of the wall or partition, the total fire-resistance rating shall be determined by the formula:

$$ R = (R_1^{0.59} + R_2^{0.59} + \ldots + R_n^{0.59} + as)^{1.7} \quad (Equation \ 7-10) $$

where:

- R = The fire-resistance rating of the assembly (hours).
- R_1, R_2 and R_n = The fire-resistance rating of the individual wythes (hours).
- as = Coefficient for continuous airspace.

Values for $R_n^{0.59}$ for use in Equation 7-10 are given in Table 722.4.1(3). The coefficient for each continuous airspace of $\frac{1}{2}$ inch to $3\frac{1}{2}$ inches (12.7 to 89 mm) separating two individual wythes shall be 0.3.

Table 722.4.1(3)
VALUES OF $R_n^{0.59}$

<table>
<thead>
<tr>
<th>$R_n^{0.59}$</th>
<th>R (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>1.91</td>
</tr>
<tr>
<td>4</td>
<td>2.27</td>
</tr>
</tbody>
</table>

Table 722.4.1(4)
COEFFICIENTS FOR PLASTER, pl^a

<table>
<thead>
<tr>
<th>THICKNESS OF PLASTER (inch)</th>
<th>ONE SIDE</th>
<th>TWO SIDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>$\frac{5}{8}$</td>
<td>0.37</td>
<td>0.75</td>
</tr>
<tr>
<td>$\frac{3}{4}$</td>
<td>0.45</td>
<td>0.90</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

- *a.* Values listed in table are for 1:3 sanded gypsum plaster.

722.4.1.4 Nonsymmetrical assemblies.
For a wall having no finish on one side or having different types or thicknesses of finish on each side, the calculation procedures of this section shall be performed twice, assuming either side to be the fire-exposed side of the wall. The fire resistance of the wall shall not exceed the lower of the two values determined.

Exception: For exterior walls with a fire separation distance greater than 5 feet (1524 mm), the fire shall be assumed to occur on the interior side only.

722.4.2 Multiwythe walls.
The fire-resistance rating for walls or partitions consisting of two or more dissimilar wythes shall be permitted to be determined by the formula:

$$ R = (R_1^{0.59} + R_2^{0.59} + \ldots + R_n^{0.59})^{1.7} \quad (Equation \ 7-11) $$

where:

- R = The fire-resistance rating of the assembly (hours).
- R_1, R_2 and R_n = The fire-resistance rating of the individual wythes (hours).

Values for $R_n^{0.59}$ for use in Equation 7-11 are given in Table 722.4.1(3).

722.4.2.1 Multiwythe walls of different material.
For walls that consist of two or more wythes of different materials (concrete or concrete masonry units) in combination with clay masonry units, the fire-resistance rating of the different materials shall be permitted to be determined from Table 722.2.1.1 for concrete; Table 722.3.2 for concrete masonry units or Table 722.4.1(1) or 722.4.1(2) for clay and tile masonry units.