TABLE OF CONTENTS

Preface .. xv

Authors ... xvii

Acknowledgements .. xviii

Symbols and Notations .. xxiii

Introduction ... xxxiii

Chapter 1 Materials... 1

1.1 General .. 1

1.2 Masonry Units ... 2

1.2.1 Clay Masonry .. 2

1.2.2 Concrete Masonry .. 6

1.3 Mortar ... 9

1.3.1 General ... 9

1.3.2 Mortar Materials .. 9

1.3.3 Types of Mortar ... 12

1.3.4 Mixing .. 14

1.3.5 Types of Mortar Joints .. 17

1.4 Grout ... 17

1.4.1 General .. 17

1.4.2 Types of Grout ... 19

1.4.3 Proportions .. 20

1.4.4 Mixing .. 21

1.4.5 Slump of Grout ... 21

1.4.6 Grout Strength Requirements ... 22

1.4.7 Testing Grout Strength .. 22

1.4.8 Methods of Grouting Masonry Walls .. 23

1.4.9 Grout Demonstration Panels ... 27

1.5 Reinforcing Steel .. 27

1.5.1 General .. 27

1.5.2 Types of Reinforcement .. 27

1.6 Questions and Problems .. 29

Chapter 2 Masonry Assemblage Strengths and Properties... 31

2.1 General ... 31

2.2 Compression Strength of Masonry Assemblies .. 31

2.2.1 Verification by Prism Tests ... 32

2.2.2 Verification by Unit Strength Method ... 37

2.2.3 Verification by Testing Prisms from Constructed Masonry ... 38

2.2.4 Selection of f_m for Use in Design ... 39

2.2.5 Selection of Materials to Achieve f_m in Construction .. 39

2.3 Flexural Strength of Masonry Assemblies ... 40

2.4 Modulus of Elasticity, E_m .. 40

2.4.1 General .. 40

2.4.2 Proposed Evaluation of Modulus of Elasticity .. 41
CHAPTER 3 LOADS ...51

3.1 General..51
3.2 Load Combinations..51
 3.2.1 Allowable Stress Design Load Combinations...52
 3.2.2 Strength Design Load Combinations.................53
 3.2.3 Load Combinations with Seismic Overstrength Factor...54
3.3 Dead Loads..54
3.4 Live Loads..55
 3.4.1 Uniform Floor Loads..58
 3.4.2 Uniform Roof Loads..59
 3.4.3 Concentrated Loads..60
 3.4.4 Other Live Loads..60
3.5 Snow Loads..60
3.6 Rain Loads..64
3.7 Flood Loads..65
3.8 Wind Loads..65
 3.8.1 Wind Loads on Main Wind Force Resisting Systems...66
 3.8.2 Wind Loads for Components and Cladding............71
 3.8.3 Wind and Seismic Detailing...............................74
 3.8.4 Examples of Calculation of Wind Pressures............74
3.9 Seismic Loads..78
 3.9.1 General..78
 3.9.2 Base Shear, V..81
 3.9.3 Vertical Distribution of Total Seismic Forces...........89
 3.9.4 Seismic Loads on Structural Elements...............90
3.10 Questions and Problems...91

CHAPTER 4 DISTRIBUTION AND ANALYSIS FOR LATERAL FORCES ..93

4.1 General..93
4.2 Wall Rigidities..94
 4.2.1 Cantilever Pier or Wall.....................................94
 4.2.2 Fixed Pier or Wall...95
 4.2.3 Combinations of Walls.....................................96
 4.2.4 Multi-Story Walls..96
 4.2.5 Walls with Joints and Openings.......................99
 4.2.6 Flanged Walls...103
4.3 Overturning...105
 4.3.1 Overturning of Foundations...........................105
 4.3.2 Overturning on Walls.....................................105
4.4 Horizontal Diaphragms..107
 4.4.1 Types of Diaphragms......................................110
 4.4.2 Forces on Diaphragms.....................................114
 4.4.3 Deflection of Diaphragms and Walls..................123
4.5 Building Irregularities..124
4.6 Drift and Deformation..126
4.7 Questions and Problems..127
TABLE OF CONTENTS

CHAPTER 5 DESIGN OF STRUCTURAL MEMBERS BY ALLOWABLE STRESS DESIGN (ASD)

- 5.1 History ... 129
- 5.2 Flexure ... 129
 - 5.2.1 General, Flexural Stress 129
 - 5.2.2 Strain Compatibility 130
 - 5.2.3 Derivation of Flexural Formulas 131
 - 5.2.4 Summary and Examples 137
 - 5.2.5 Compression Reinforcement 139
- 5.3 Shear ... 142
 - 5.3.1 Allowable Shear – Masonry 145
 - 5.3.2 Allowable Shear – Reinforcement 145
- 5.4 Compression ... 146
 - 5.4.1 General ... 146
- 5.5 Combined Flexure and Compression 147
 - 5.5.1 General ... 147
 - 5.5.2 Methods of Design for Interaction of Axial Load and Moment 151
- 5.6 Development .. 170
 - 5.6.1 Reinforcing Steel 170
 - 5.6.2 Anchor Bolts .. 175
- 5.7 Bearing ... 180
- 5.8 Beams ... 181
 - 5.8.1 Flexure ... 181
 - 5.8.2 Shear ... 182
 - 5.8.3 Deflection ... 185
 - 5.8.4 Deep Beams .. 187
- 5.9 Columns ... 189
 - 5.9.1 General ... 189
 - 5.9.2 Compression .. 190
 - 5.9.3 Flexure and Compression 190
 - 5.9.4 Special Topics ... 192
- 5.10 Walls ... 193
 - 5.10.1 Compression ... 193
 - 5.10.2 Out-of-Plane Loads 195
 - 5.10.3 In-Plane Loads .. 205
- 5.11 Questions and Problems 216

CHAPTER 6 DESIGN OF STRUCTURAL MEMBERS BY STRENGTH DESIGN (SD)

- 6.1 Introduction .. 219
 - 6.1.1 History ... 219
 - 6.1.2 Concepts ... 219
 - 6.1.3 Design Assumptions 220
 - 6.1.4 Strength Reduction Factor, ϕ 221
- 6.2 Flexure ... 221
 - 6.2.1 Flexural Behavior 222
 - 6.2.2 Derivation of Flexural Formulas 224
 - 6.2.3 Compression Reinforcement 226
 - 6.2.4 Reinforcement Limits 230
- 6.3 Shear ... 233
 - 6.3.1 Shear Capacity – Masonry 233
 - 6.3.2 Shear Capacity – Reinforcement 233
 - 6.3.3 Shear Capacity – Limits 233
 - 6.3.4 Shear Reinforcement – Limits 234
- 6.4 Compression ... 234
- 6.5 Combined Flexure and Compression 234
 - 6.5.1 Simplified Approach 234
 - 6.5.2 Sections with Tension Only Reinforcement 238
Chapter 7 Details of Reinforcement and Construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10 Walls</td>
<td>255</td>
</tr>
<tr>
<td>6.10.1 Compression</td>
<td>255</td>
</tr>
<tr>
<td>6.10.2 Out-of-Plane Loads</td>
<td>255</td>
</tr>
<tr>
<td>6.10.3 In-Plane Loads</td>
<td>268</td>
</tr>
<tr>
<td>6.11 Piers</td>
<td>290</td>
</tr>
<tr>
<td>6.12 Special Topics</td>
<td>290</td>
</tr>
<tr>
<td>6.12.1 Wall Frames</td>
<td>290</td>
</tr>
<tr>
<td>6.12.2 The Core Method of Design</td>
<td>294</td>
</tr>
<tr>
<td>6.12.3 Limit State</td>
<td>300</td>
</tr>
<tr>
<td>6.13 Questions and Problems</td>
<td>303</td>
</tr>
</tbody>
</table>

Chapter 8 Building Details

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 General Connections</td>
<td>337</td>
</tr>
<tr>
<td>8.2 Wall to Wall Connections</td>
<td>337</td>
</tr>
<tr>
<td>8.3 Lintel and Bond Beam Connection</td>
<td>339</td>
</tr>
<tr>
<td>8.4 Wall to Wood Diaphragm Connections</td>
<td>339</td>
</tr>
</tbody>
</table>
CHAPTER 12 DESIGN OF SEVEN–STORY MASONRY LOAD BEARING WALL APARTMENT BUILDING..............................401

12.1 General..401
 12.1.1 Design Criteria, Elevation and Plan..402
 12.1.2 Floor and Roof Systems..402
 12.1.3 Structural Wall System..404
 12.1.4 Dead and Live Loads on the Masonry Walls...404
 12.1.5 Seismic Loading..408
 12.1.6 Wind Design..411

12.2 Design of Wall “f” on First Story, Base Level – Allowable Stress Design..411
 12.2.1 Load Combinations..412
 12.2.2 Shear..412
 12.2.3 Compression Limit: Equation 16-14...413
 12.2.4 Tension Limit: Equation 16-16...413
 12.2.5 Limits on Reinforcement..414

12.3 Design of Wall “j” on First Story, Base Level – Strength Design..414
 12.3.1 Load Combinations..414
 12.3.2 Compression...414
 12.3.3 Combined Compression and Flexure..415
 12.3.4 Shear..415
 12.3.5 Limits on Reinforcement..417

12.4 Design of Wall “f” on First Story, Base Level..417
 12.4.1 General...417
 12.4.2 Allowable Stress Design..419
 12.4.3 Limits on Reinforcement..422

12.5 Strength Design...422
 12.5.1 Load Combinations..422
 12.5.2 Combined Compression and Flexure – Flange in Tension...423
 12.5.3 Combined Compression and Flexure – Flange in Compression..423
 12.5.4 Shear..424
 12.5.5 Limits on Reinforcement..424

12.6 History of Wall j..425

12.7 Additional Considerations in the Design of Multi-Story Shear Wall Structures.....................................425

12.8 Questions and Problems...427

CHAPTER 13 RETAINING WALLS..429

13.1 General..429

13.2 Types of Retaining Walls..429
 13.2.1 Gravity Walls...429
 13.2.2 Counterfort or Buttress Walls..429
 13.2.3 Cantilever Retaining Walls..431
 13.2.4 Supported Walls...431

13.3 Design of Retaining Walls..432
 13.3.1 Effect of Corners on Lateral Supporting Capacity of Retaining Walls..432
 13.3.2 Preliminary Proportioning of Retaining Walls..433
 13.3.3 Retaining Wall Stability..434

13.4 Cantilever Retaining Wall Design Example..434
 13.4.1 Design Criteria..434
 13.4.2 Stem Design..435
 13.4.3 Footing Design..440

13.5 Questions and Problems...447
CHAPTER 14 TABLES AND DIAGRAMS

ALLOWABLE STRESS DESIGN TABLES AND DIAGRAMS

Table ASD-1a Compressive Strength of Clay Masonry/Unit Strength Method..........................450
Table ASD-1b Compressive Strength of Concrete Masonry/Unit Strength Method..................450
Table ASD-2a Clay Masonry f’m, E’m, n and E’y Values Based on the Clay Masonry Unit
Strength and the Mortar Type..451
Table ASD-2b Concrete Masonry f’m, E’m, n and E’y Values Based on the Concrete
Masonry Unit Strength and the Mortar Type..452
Table ASD-3 Maximum Allowable Working Stresses (psi), for Reinforced Solid and
Hollow Unit Masonry...453
Table ASD-4 Allowable Steel Working Stresses, psi...455
Table ASD-5a Allowable Shear Stress Provided by Masonry, F_vm (psi).................................456
Diagram ASD-5a Allowable Shear Stress Provided by Masonry, F_vm (psi)..........................456
Table ASD-5b Allowable Shear Stress Provided by Masonry, F_vm (psi)/Special
Reinforced Shear Walls..457
Diagram ASD-5b Allowable Shear Stress Provided by Masonry, F_vm (psi)/Special
Reinforced Shear Walls..457
Table ASD-6 Maximum Allowable Shear Stress in Masonry and Reinforcement, F_u_max (psi).........458
Diagram ASD-6 Maximum Allowable Shear Stress in Masonry and Reinforcing Steel, F_u_max (psi)......458
Table ASD-7a Allowable Tension B_ab (lbs) for Headed and Bent-Bar Anchor Bolts in Clay
and Concrete Masonry Based on the Masonry Breakout Strength..............................459
Table ASD-7b Allowable Tension B_ap (lbs) for Bent-Bar Anchor Bolts in Clay and
Concrete Masonry Based on the Masonry Pull-Out Strength......................................459
Table ASD-7c Reduction in Masonry Allowable Tension Breakout, Shear Breakout and
Shear Pry-Out Force Due to Anchor Spacing and Edge Distance..................................460
Table ASD-7d Allowable Tension B_as (lbs) for Embedded Headed Anchor Bolts in Clay and
Concrete Masonry Based on A307 Anchor Bolts..461
Table ASD-8a Allowable Shear B_vbr (lbs) for Headed and Bent-Bar Anchor Bolts in Clay and
Concrete Masonry Based on the Masonry Breakout Strength......................................462
Table ASD-8b Allowable Shear B_vpr (lbs) for Headed and Bent-Bar Anchor Bolts in Clay and
Concrete Masonry Based on the Masonry Pryout Strength..462
Table ASD-8c Allowable Shear B_vc (lbs) for Embedded Anchor Bolts in Clay and
Concrete Masonry Based on the Masonry Crushing Strength and Strength
of ASTM A307 Anchor Bolt Material...463
Table ASD-9a Allowable Axial Wall Compressive Stresses F_a = 0.25 f’mR (psi) and
R = [1 - (h/140r)2]..464
Table ASD-9b Allowable Axial Wall Compressive Stresses F_a = 0.25 f’mR (psi) and
R = [1 - (h/140r)2]..465
Table ASD-9c Allowable Axial Wall Compressive Stresses F_a = 0.25 f’mR (psi) and
R = (70r/h)2..466
Table ASD-10 Allowable Flexural Tension of Clay and Concrete Masonry (psi)..........................467
Table ASD-22 Standard Reinforcement Bends and Hooks..467
Table ASD-24a Flexural Design Coefficients for Allowable Stresses (Clay Masonry) for
f’m = 1500 psi, f_y = 60,000 psi and n = 27.6..468
Diagram ASD-24a K_f Versus η for Various Masonry and Steel Stresses, Clay Masonry,
f’m = 1500 psi, n = 27.6...469
Table ASD-24b Flexural Design Coefficients for Allowable Stresses (Concrete Masonry) for
f’m = 1500 psi, f_y = 60,000 psi and n = 21.5...470
Diagram ASD-24b K_f Versus η for Various Masonry and Steel Stresses, Concrete Masonry,
f’m = 1500 psi, n = 21.5...471
Table ASD-25a Flexural Design Coefficients for Allowable Stresses (Clay Masonry) for
f’m = 2000 psi, f_y = 60,000 psi and n = 20.7...472
Diagram ASD-25a K_f Versus ρ for Various Masonry and Steel Stresses, Clay Masonry,
$\rho = 2000$ psi, $n = 20.7$..473

Table ASD-25b Flexural Design Coefficients for Allowable Stresses (Concrete Masonry) for
$f_m' = 2000$ psi, $f_y = 60,000$ psi and $n = 16.1$...474

Diagram ASD-25b K_f Versus ρ for Various Masonry and Steel Stresses, Concrete Masonry,
$f_m' = 2000$ psi, $n = 16.1$..475

Table ASD-26a Flexural Design Coefficients for Allowable Stresses (Clay Masonry) for
$f_m' = 2500$ psi, $f_y = 60,000$ psi and $n = 16.6$...476

Diagram ASD-26a K_f Versus ρ for Various Masonry and Steel Stresses, Concrete Masonry,
$f_m' = 2500$ psi, $n = 16.6$..477

Table ASD-26b Flexural Design Coefficients for Allowable Stresses (Concrete Masonry) for
$f_m' = 2500$ psi, $f_y = 60,000$ psi and $n = 12.9$...478

Diagram ASD-26b K_f Versus ρ for Various Masonry and Steel Stresses, Concrete Masonry,
$f_m' = 2500$ psi, $n = 12.9$..479

Table ASD-27a Flexural Design Coefficients for Allowable Stresses (Clay Masonry) for
$f_m' = 3000$ psi, $f_y = 60,000$ psi and $n = 13.8$...480

Diagram ASD-27a K_f Versus ρ for Various Masonry and Steel Stresses, Clay Masonry,
$f_m' = 3000$ psi, $n = 13.8$..481

Table ASD-27b Flexural Design Coefficients for Allowable Stresses (Concrete Masonry) for
$f_m' = 3000$ psi, $f_y = 60,000$ psi and $n = 10.7$...482

Diagram ASD-27b K_f Versus ρ for Various Masonry and Steel Stresses, Concrete Masonry,
$f_m' = 3000$ psi, $n = 10.7$..483

Table ASD-28a Flexural Design Coefficients for Allowable Stresses (Clay Masonry) for
$f_m' = 3500$ psi, $f_y = 60,000$ psi and $n = 11.8$...484

Diagram ASD-28a K_f Versus ρ for Various Masonry and Steel Stresses, Clay Masonry,
$f_m' = 3500$ psi, $n = 11.8$..485

Table ASD-28b Flexural Design Coefficients for Allowable Stresses (Concrete Masonry) for
$f_m' = 3500$ psi, $f_y = 60,000$ psi and $n = 9.2$...486

Diagram ASD-28b K_f Versus ρ for Various Masonry and Steel Stresses, Concrete Masonry,
$f_m' = 3500$ psi, $n = 9.2$..487

Table ASD-29a Flexural Design Coefficients for Allowable Stresses (Clay Masonry) for
$f_m' = 4000$ psi, $f_y = 60,000$ psi and $n = 10.4$...488

Diagram ASD-29a K_f Versus ρ for Various Masonry and Steel Stresses, Clay Masonry,
$f_m' = 4000$ psi, $n = 10.4$..489

Table ASD-29b Flexural Design Coefficients for Allowable Stresses (Concrete Masonry) for
$f_m' = 4000$ psi, $f_y = 60,000$ psi and $n = 8.1$...490

Diagram ASD-29b K_f Versus ρ for Various Masonry and Steel Stresses, Concrete Masonry,
$f_m' = 4000$ psi, $n = 8.1$..491

Diagram ASD-34 K_f Versus n_f for Various Masonry and Stresses f_b..........................492

Table ASD-34a Flexural Coefficients Based on n_f Values..493

Table ASD-34b Flexural Coefficients Based on n_f Values..494

Table ASD-36 Moment Capacity of Walls and Beams for Balanced Design Conditions for
$f_m' = 1500$ psi and $f_y = 60,000$ psi...495

Table ASD-37 Moment Capacity of Walls and Beams for Balanced Design Conditions for
$f_m' = 2000$ psi and $f_y = 60,000$ psi...496

Table ASD-38 Moment Capacity of Walls and Beams for Balanced Design Conditions for
$f_m' = 2500$ psi and $f_y = 60,000$ psi...497

Table ASD-39 Moment Capacity of Walls and Beams for Balanced Design Conditions for
$f_m' = 3000$ psi and $f_y = 60,000$ psi...498

Table ASD-40 Moment Capacity of Walls and Beams for Balanced Design Conditions for
$f_m' = 3500$ psi and $f_y = 60,000$ psi...499
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Table/Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table ASD-41</td>
<td>Moment Capacity of Walls and Beams for Balanced Design Conditions for $f_m = 4000$ psi and $f_y = 60,000$ psi</td>
</tr>
<tr>
<td>Table ASD-46a</td>
<td>Moment Capacity (ft k/ft) of Clay Masonry Walls with $A_s = 0.0007bt$</td>
</tr>
<tr>
<td>Table ASD-46b</td>
<td>Moment Capacity (ft k/ft) of Concrete Masonry Walls with $A_s = 0.0007bt$</td>
</tr>
<tr>
<td>Table ASD-47a</td>
<td>Moment Capacity (ft k/ft) of Clay Masonry Walls with $A_s = 0.0013bt$</td>
</tr>
<tr>
<td>Table ASD-47b</td>
<td>Moment Capacity (ft k/ft) of Concrete Masonry Walls with $A_s = 0.0013bt$</td>
</tr>
<tr>
<td>Table ASD-48a</td>
<td>Moment Capacity (ft k/ft) of Clay Masonry Walls with $A_s = 0.001bt$</td>
</tr>
<tr>
<td>Table ASD-48b</td>
<td>Moment Capacity (ft k/ft) of Concrete Masonry Walls with $A_s = 0.001bt$</td>
</tr>
<tr>
<td>Table ASD-56</td>
<td>Allowable Shear Stress Resisted by Steel Reinforcement (psi) for Nominal 6 in. Wide Sections with $F_s = 32,000$ psi</td>
</tr>
<tr>
<td>Diagram ASD-56</td>
<td>Spacing of Shear Reinforcement for Nominal 6 in. Wide Sections</td>
</tr>
<tr>
<td>Table ASD-58</td>
<td>Allowable Shear Stress Resisted by Steel Reinforcement (psi) for Nominal 8 in. Wide Sections with $F_s = 32,000$ psi</td>
</tr>
<tr>
<td>Diagram ASD-58</td>
<td>Spacing of Shear Reinforcement for Nominal 8 in. Wide Sections</td>
</tr>
<tr>
<td>Table ASD-60</td>
<td>Allowable Shear Stress Resisted by Steel Reinforcement (psi) for Nominal 10 in. Wide Sections with $F_s = 32,000$ psi</td>
</tr>
<tr>
<td>Diagram ASD-60</td>
<td>Spacing of Shear Reinforcement for Nominal 10 in. Wide Sections</td>
</tr>
<tr>
<td>Table ASD-62</td>
<td>Allowable Shear Stress Resisted by Steel Reinforcement (psi) for Nominal 12 in. Wide Sections with $F_s = 32,000$ psi</td>
</tr>
<tr>
<td>Diagram ASD-62</td>
<td>Spacing of Shear Reinforcement for Nominal 12 in. Wide Sections</td>
</tr>
<tr>
<td>Table ASD-74a</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Clay Masonry) $f_m = 1500$ psi, $F_s = 32,000$ psi, and $n = 27.6$</td>
</tr>
<tr>
<td>Diagram ASD-74a</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 1500$ psi, (Clay Masonry)</td>
</tr>
<tr>
<td>Table ASD-74b</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Concrete Masonry) $f_m = 1500$ psi, $F_s = 32,000$ psi, and $n = 21.5$</td>
</tr>
<tr>
<td>Diagram ASD-74b</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 1500$ psi, (Concrete Masonry)</td>
</tr>
<tr>
<td>Table ASD-75a</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Clay Masonry) $f_m = 2000$ psi, $F_s = 32,000$ psi, and $n = 20.7$</td>
</tr>
<tr>
<td>Diagram ASD-75a</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 2000$ psi, (Clay Masonry)</td>
</tr>
<tr>
<td>Table ASD-75b</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Concrete Masonry) $f_m = 2000$ psi, $F_s = 32,000$ psi, and $n = 16.1$</td>
</tr>
<tr>
<td>Diagram ASD-75b</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 2000$ psi, (Concrete Masonry)</td>
</tr>
<tr>
<td>Table ASD-76a</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Clay Masonry) $f_m = 2500$ psi, $F_s = 32,000$ psi, and $n = 16.6$</td>
</tr>
<tr>
<td>Diagram ASD-76a</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 2500$ psi, (Clay Masonry)</td>
</tr>
<tr>
<td>Table ASD-76b</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Concrete Masonry) $f_m = 2500$ psi, $F_s = 32,000$ psi, and $n = 12.9$</td>
</tr>
<tr>
<td>Diagram ASD-76b</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 2500$ psi, (Concrete Masonry)</td>
</tr>
<tr>
<td>Table ASD-77a</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Clay Masonry) $f_m = 3000$ psi, $F_s = 32,000$ psi, and $n = 13.8$</td>
</tr>
<tr>
<td>Diagram ASD-77a</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 3000$ psi, (Clay Masonry)</td>
</tr>
<tr>
<td>Table ASD-77b</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Concrete Masonry) $f_m = 3000$ psi, $F_s = 32,000$ psi, and $n = 10.7$</td>
</tr>
<tr>
<td>Diagram ASD-77b</td>
<td>Steel Ratio ρ and ρ' Versus K_f for $f_m = 3000$ psi, (Concrete Masonry)</td>
</tr>
<tr>
<td>Table ASD-78a</td>
<td>Coefficients ρ and ρ' for Tension and Compression Steel in a Flexural Member (Clay Masonry) $f_m = 3500$ psi, $F_s = 32,000$ psi, and $n = 11.8$</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for other tables and diagrams.
<table>
<thead>
<tr>
<th>Table GN-20d</th>
<th>Areas of Reinforcing Steel per Foot (square inches)</th>
<th>561</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table GN-21a</td>
<td>Maximum Spacing (inches) of Minimum Reinforcing Steel for Special Reinforced Masonry Shear Walls, (A_s = 0.0007bd)</td>
<td>562</td>
</tr>
<tr>
<td>Table GN-21b</td>
<td>Maximum Spacing (inches) of Minimum Reinforcing Steel for Special Reinforced Masonry Shear Walls, (A_s = 0.001bt)</td>
<td>563</td>
</tr>
<tr>
<td>Table GN-21c</td>
<td>Maximum Spacing (inches) of Minimum Reinforcing Steel for Special Reinforced Masonry Shear Walls, (A_s = 0.001bt)</td>
<td>564</td>
</tr>
<tr>
<td>Table GN-22a</td>
<td>Basic Development Length (inches) for Tension and Compression Reinforcing Bars for Minimum Cover and for Cover and Clear Spacing (\geq 9d_p)</td>
<td>565</td>
</tr>
<tr>
<td>Table GN-22a.1</td>
<td>Maximum Required Reinforcement Development Length (72(d_b)) for Strength Design Based on IBC, (in.)</td>
<td>567</td>
</tr>
<tr>
<td>Table GN-22b</td>
<td>Basic Development Length (inches) for Standard Hooks in Tension</td>
<td>567</td>
</tr>
<tr>
<td>Table GN-22w</td>
<td>Maximum Reinforcement Lap Length for Allowable Stress Design Based on IBC, (in.)</td>
<td>567</td>
</tr>
<tr>
<td>Table GN-22x</td>
<td>Reinforcement Lap Splice Length Applying Confinement Reinforcement Factor, (\xi, f_m' = 1500 \text{ psi})</td>
<td>568</td>
</tr>
<tr>
<td>Table GN-23a</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>569</td>
</tr>
<tr>
<td>Table GN-23b</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>570</td>
</tr>
<tr>
<td>Table GN-23c</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>571</td>
</tr>
<tr>
<td>Table GN-23d</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>572</td>
</tr>
<tr>
<td>Table GN-23e</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>573</td>
</tr>
<tr>
<td>Table GN-23f</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>574</td>
</tr>
<tr>
<td>Table GN-23g</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>575</td>
</tr>
<tr>
<td>Table GN-23h</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>576</td>
</tr>
<tr>
<td>Table GN-23i</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>577</td>
</tr>
<tr>
<td>Table GN-23j</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>578</td>
</tr>
<tr>
<td>Table GN-23k</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>579</td>
</tr>
<tr>
<td>Table GN-23l</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>580</td>
</tr>
<tr>
<td>Table GN-23m</td>
<td>Steel Ratio (\rho = A_s/bd, A_s' \text{ in Square Inches, } b \text{ and } d \text{ in Inches})</td>
<td>581</td>
</tr>
<tr>
<td>Table GN-24a</td>
<td>Ratio of Steel Area to Gross Cross-Sectional Area</td>
<td>582</td>
</tr>
<tr>
<td>Table GN-24b</td>
<td>Maximum Area of Reinforcement in a CMU Cell</td>
<td>583</td>
</tr>
<tr>
<td>Table GN-24c</td>
<td>Maximum Number of Reinforcing Bars per Cell</td>
<td>583</td>
</tr>
<tr>
<td>Table GN-25a</td>
<td>Conversion of English Measurement Systems</td>
<td>584</td>
</tr>
<tr>
<td>Table GN-25b</td>
<td>Conversion of Metric Measurement Systems</td>
<td>585</td>
</tr>
<tr>
<td>Table GN-25c</td>
<td>SI Prefixes for Magnitude</td>
<td>586</td>
</tr>
<tr>
<td>Table GN-26a</td>
<td>Length Equivalents – Inches to Millimeters</td>
<td>586</td>
</tr>
<tr>
<td>Table GN-26b</td>
<td>Length Equivalents – Feet to Meters</td>
<td>587</td>
</tr>
<tr>
<td>Table GN-27</td>
<td>Force Equivalents – Pounds Force to Newtons</td>
<td>587</td>
</tr>
<tr>
<td>Table GN-28a</td>
<td>Masonry and Steel Stresses – psi to MPa and kg/cm²</td>
<td>588</td>
</tr>
<tr>
<td>Table GN-28b</td>
<td>Pressure and Stress Equivalents – Pounds per Square Inch to Kilogram per Square Centimeter</td>
<td>588</td>
</tr>
<tr>
<td>Table GN-28c</td>
<td>Pressure and Stress Equivalents – Pounds per Square Inch to Kilopascals</td>
<td>589</td>
</tr>
<tr>
<td>Table GN-28d</td>
<td>Pressure and Stress Equivalents – Pounds per Square Foot to Pascals</td>
<td>589</td>
</tr>
<tr>
<td>Table GN-29a</td>
<td>Moment Equivalents – Foot Pounds Force to Newton Meters</td>
<td>590</td>
</tr>
<tr>
<td>Table GN-29b</td>
<td>Moment Equivalents – Foot Kips Force to Kilogram Meters</td>
<td>590</td>
</tr>
<tr>
<td>Table GN-30</td>
<td>Pounds per Linear Foot Equivalents to Kilograms per Meter</td>
<td>591</td>
</tr>
<tr>
<td>Table GN-31</td>
<td>Moment per Unit Length Equivalents – Foot Pounds Force per Foot to Newton Meters per Meters</td>
<td>591</td>
</tr>
<tr>
<td>Table GN-32</td>
<td>Allowable Compressive Stresses for Empirical Design of Masonry</td>
<td>592</td>
</tr>
<tr>
<td>Table GN-89a</td>
<td>Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces</td>
<td>593</td>
</tr>
<tr>
<td>Table GN-89b</td>
<td>Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces</td>
<td>594</td>
</tr>
<tr>
<td>Table GN-89c</td>
<td>Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces</td>
<td>595</td>
</tr>
</tbody>
</table>
Table GN-89d Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces..596
Table GN-89e Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces..597
Table GN-89f Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces..598
Table GN-89g Coefficients for Deflection and Rigidity of Walls or Piers for Distribution of Horizontal Forces..599

STRENGTH DESIGN TABLES AND DIAGRAMS

Table SD-2 Coefficients for Flexural Strength Design: $f_m' = 1500$ psi and $f_y = 60,000$ psi.............602
Table SD-3 Coefficients for Flexural Strength Design: $f_m' = 2000$ psi and $f_y = 60,000$ psi.............603
Table SD-4 Coefficients for Flexural Strength Design: $f_m' = 2500$ psi and $f_y = 60,000$ psi.............604
Table SD-5 Coefficients for Flexural Strength Design: $f_m' = 3000$ psi and $f_y = 60,000$ psi.............605
Table SD-6 Coefficients for Flexural Strength Design: $f_m' = 3500$ psi and $f_y = 60,000$ psi.............606
Table SD-7 Coefficients for Flexural Strength Design: $f_m' = 4000$ psi and $f_y = 60,000$ psi.............607
Table SD-12 Design Coefficient q for the Determination of the Reinforcing Ratio ρ.......................608
Table SD-14 Moment Capacity of Walls and Beams: $f_m' = 1500$ psi and $f_y = 60,000$ psi................609
Table SD-15 Moment Capacity of Walls and Beams: $f_m' = 2000$ psi and $f_y = 60,000$ psi.............610
Table SD-16 Moment Capacity of Walls and Beams: $f_m' = 2500$ psi and $f_y = 60,000$ psi.............611
Table SD-17 Moment Capacity of Walls and Beams: $f_m' = 3000$ psi and $f_y = 60,000$ psi.............612
Table SD-18 Moment Capacity of Walls and Beams: $f_m' = 3500$ psi and $f_y = 60,000$ psi.............613
Table SD-19 Moment Capacity of Walls and Beams: $f_m' = 4000$ psi and $f_y = 60,000$ psi.............614
Table SD-22 Standard Reinforcement Bends and Hooks.. ...615
Table SD-24 Modulus of Rupture (f_r) for Clay and Concrete Masonry (psi)..................................615
Table SD-26 Maximum Nominal Shear Stress Provided by Masonry, V_{nm} psi...............................616
Diagram SD-26 Maximum Nominal Shear Stress Provided by Masonry and Reinforcing Steel, V_n psi...617
Table SD-27 Maximum Nominal Shear Stress Provided by Masonry and Reinforcement V_n psi.........................617
Diagram SD-27 Maximum Nominal Shear Stress Provided by Masonry and Reinforcing Steel, V_n psi...617
Table SD-91a Allowable Tension B_{abm} (lbs) for Headed and Bent-Bar Anchor Bolts in Clay and Concrete Masonry Based on the Masonry Breakout Strength...........................618
Table SD-91b Allowable Tension B_{abm} (lbs) for Bent-Bar Anchor Bolts in Clay and Concrete Masonry Based on the Masonry Pullout Strength...619
Table SD-91c Reduction in Masonry Allowable Tension Breakout, Shear Breakout and Shear Pryout Force Due to Anchor Spacing and Edge Distance..620
Table SD-91d Allowable Tension B_{abs} (lbs) for Embedded Headed Anchor Bolts in Clay and Concrete Masonry Based on A307 Anchor Bolts...621
Table SD-92a Allowable Shear B_{amn} (lbs) for Headed and Bent-Bar Anchor Bolts in Clay and Concrete Masonry Based on the Masonry Breakout Strength...........................622
Table SD-92b Allowable Shear B_{amp} (lbs) for Headed and Bent-Bar Anchor Bolts in Clay and Concrete Masonry Based on the Masonry Pryout Strength...622
Table SD-92c Allowable Shear B_{anc} (lbs) for Embedded Anchor Bolts in Clay and Concrete Masonry Based on the Masonry Crushing Strength and Strength of ASTM A307 Anchor Bolt Material...623

CHAPTER 15 REFERENCES..625

CHAPTER 16 INDEX...635
In 1970, James Amrhein recognized that a comprehensive engineering design handbook was needed which would encompass the coefficients, tables, charts and design data required for the design of reinforced masonry structures. Mr. Amrhein tried to fulfill these requirements with the first edition of this publication. Since then, subsequent editions have been improved and expanded to comply with applicable editions of the Uniform Building Code and International Building Code keeping pace with the growth of reinforced masonry engineering.

The authors would like this book to be as useful as possible to designers of reinforced masonry by eliminating repetitious and routine calculations. This publication will increase the understanding and reduce the time required for masonry design.

The detail and design requirements included in this book are based upon the 2012 edition of the International Building Code published by the International Code Council, and ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. Also included in this edition is information and design tables based on the code reference document, TMS 402/ACI 530/ASCE 5 Building Code Requirements for Masonry Structures.

In addition to the code requirements, this publication includes sound engineering practices to serve as a guide to the engineer and designer.

There may be several design and analysis methods and the results for the design can be somewhat different. Techniques included in this publication have been reviewed by competent engineers who have found the results to be satisfactory and safe. The authors welcome recommendations for the extension and improvement of the material and any new design techniques for future editions.