TABLE OF CONTENTS

Acknowledgements

Masonry Institute of America

International Code Council

Masonry Standards Joint Committee

The Masonry Society

American Concrete Institute

American Society of Civil Engineers

CHAPTER 1. INTRODUCTION

1.1 General

1.2 The Inspector

1.3 Responsibilities and Duties

1.4 Equipment and Materials for the Inspector

1.5 Terminology

CHAPTER 2. MATERIALS

2.1 General

2.2 Material

2.2.1 Concrete Masonry Units

2.2.2 Clay Masonry Units

2.2.3 AAC Masonry Units

2.2.4 Stone Masonry Units

2.2.5 Ceramic Tile

2.2.6 Glass Unit Masonry

2.2.7 Mortar

2.2.8 Grout

2.2.9 Reinforcement

2.2.10 Other Standards
2.3 Concrete Masonry Units--35
 2.3.1 General--35
 2.3.2 Dimensions---35
 2.3.3 Wide Selection of Units---36
 2.3.4 Component Units--38
 2.3.5 Storing Masonry Units--39

2.4 Cementitious Materials--40
 2.4.1 Portland Cement---41
 2.4.2 Plastic Cement--41
 2.4.3 Mortar Cement---42
 2.4.4 Masonry Cement--42
 2.4.5 Lime---42

2.5 Aggregates for Mortar and Grout---44

2.6 Reinforcing Steel--45
 2.6.1 General--45
 2.6.2 Reinforcing Bars--48
 2.6.3 Identification Marks---49
 2.6.4 Overall Bar Diameters--49

2.7 Joint Reinforcing Steel--50
 2.7.1 General--50
 2.7.2 Description---51
 2.7.3 Configuration and Size of Longitudinal and Cross Wires------------------51
 2.7.4 Material Requirements--52
 2.7.5 Fabrication---52

2.8 Water--53

2.9 Additives and Admixtures---53

2.10 Mortar---54
 2.10.1 General--54
 2.10.2 Proportions of Mortar--55
 2.10.3 Mortar Aggregate—Sand---57
 2.10.4 Mixing--58
 2.10.5 Pre-Blended Mortar--60
 2.10.6 Retempering---61
 2.10.7 Color---61
 2.10.8 Proprietary Mortars---63
 2.10.9 Mortar Admixtures---63

2.11 Grout---63
 2.11.1 General--63
CHAPTER 3. QUALITY CONTROL, SAMPLING AND TESTING

3.1 Quality Control---75
3.2 Sampling and Testing---------------------------------------76
 3.2.1 Cone Penetration Test for Consistency of Mortar
 3.2.2 Field Test for Mortar Strength
 3.2.3 Field Tests for Grout----------------------------------78
3.3 Concrete Masonry Units-----------------------------------83
3.4 Prism Testing--84
 3.4.1 General--84
 3.4.2 Standard Prism Tests---------------------------------86
 3.4.3 Tests of Masonry Prisms----------------------------87
 3.4.4 Specified Compressive Strength, f'_{cu}-------------88
3.5 Level of Inspection--97
 3.5.1 Quality Assurance Level A--------------------------97
 3.5.2 Quality Assurance Level B--------------------------98
 3.5.3 Quality Assurance Level C------------------------101
3.6 Core Testing---103
3.7 Summary---105

CHAPTER 4. GENERAL CONSTRUCTION PRACTICE AND LAYOUT-----------------------111

4.1 General---111
4.2 Materials, Handling, Storage and Preparation------111
4.3 Mortar Joints---115
4.4 Preparation of Foundation and Site----------------------118
4.5 Placement and Layout------------------------------------120
 4.5.1 General---120
 4.5.2 Installation--121
 4.5.3 Typical Layout of CMU Walls------------------------136
4.6 Racking and Tooothing------------------------------------149

CHAPTER 5. REINFORCING STEEL----------------------------------151

 5.1 General---151
 5.2 Maximum Size/Amount of Reinforcing Steel-------------151
 5.2.1 Maximum Size/Amount of Reinforcing Steel–Allowable Stress Design-------------------152
 5.2.2 Maximum Size/Amount of Reinforcing Steel–Strength Design--------------------------153
 5.3 Spacing of Steel in Walls-------------------------------154
 5.4 Clearances of Steel in Masonry------------------------157
 5.5 Securing Reinforcing Steel-----------------------------163
 5.6 Location Tolerances of Bars---------------------------164
 5.7 Lap Splices, Reinforcing Bars-------------------------167
 5.8 Joint Reinforcement------------------------------------171
 5.8.1 Lap Splices, Joint Reinforcement-------------------171
 5.8.2 Coverage and Layout of Joint Reinforcing Steel------------------------------------172
 5.9 Hooks and Bends in Reinforcing Bars---------------------176
 5.10 Anchorage of Shear Reinforcing Steel-------------------178
 5.11 Column Reinforcement----------------------------------183
 5.11.1 Vertical Reinforcement-----------------------------183
 5.11.2 Lightly Loaded Columns-----------------------------184
 5.11.3 Reinforcing Tie Details----------------------------185
 5.11.4 Projecting Wall Columns or Pilasters--------------193
 5.11.5 Flush Wall Columns, Pilasters and Compression Steel at End of Walls---------------195
 5.11.6 Ties on Compression Steel in Beams---------------196
 5.11.7 Anchor Bolts--197
Chapter 6. Grouting of Concrete Masonry Walls

6.1 General ... 205
6.2 Mortar Protrusions 205
6.3 Grout Slump .. 206
6.4 Grouting Limitations 207
6.5 Low–Lift Grouting 210
6.6 High–Lift Grouting 213
6.7 Cleanouts ... 218
6.8 Consolidation of Grout 219
6.9 Grout Barriers 220
6.10 Use of Aluminum Equipment 220
6.11 Pumping Grout 221
6.12 Grout Demonstration Panel 222

Chapter 7. Special Provisions for Seismic Design and Construction

7.1 General ... 223
7.2 IBC Seismic Design Categories 224
 7.2.1 Seismic Design Category A 225
 7.2.2 Seismic Design Category B 228
 7.2.3 Seismic Design Category C 228
 7.2.4 Seismic Design Category D 233
 7.2.5 Seismic Design Categories E and F 236

Chapter 8. Prestressed Masonry

8.1 General ... 237
8.2 Materials .. 241
8.3 Construction 247

Chapter 9. Special Topics or Conditions

9.1 Bracing of Walls 253
9.2 Pipes and Conduits Embedded in Masonry 255
Chapter 9. Movement Joints and Crack Control

Chapter 9

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 Adjacent Work</td>
<td>255</td>
</tr>
<tr>
<td>9.4 Intersecting Structural Elements</td>
<td>256</td>
</tr>
<tr>
<td>9.4.1 Wall to Wall</td>
<td>256</td>
</tr>
<tr>
<td>9.4.2 Wall to Floor or Roof</td>
<td>261</td>
</tr>
<tr>
<td>9.5 Multiwythe Walls</td>
<td>263</td>
</tr>
<tr>
<td>9.5.1 General</td>
<td>263</td>
</tr>
<tr>
<td>9.5.2 Metal Ties for Cavity Wall Construction</td>
<td>265</td>
</tr>
<tr>
<td>9.5.3 Metal Ties for Grouted Multiwythe Construction</td>
<td>268</td>
</tr>
</tbody>
</table>

Chapter 10. Movement Joints and Crack Control

Chapter 10

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 General</td>
<td>269</td>
</tr>
<tr>
<td>10.2 Jointing; Control Joints and Expansion Joints</td>
<td>270</td>
</tr>
<tr>
<td>10.2.1 Sources of Movement</td>
<td>270</td>
</tr>
<tr>
<td>10.2.2 Properties Affecting Concrete Masonry Units</td>
<td>270</td>
</tr>
<tr>
<td>10.2.3 Environmental Factors</td>
<td>270</td>
</tr>
<tr>
<td>10.2.4 Design/Construction Deficiencies</td>
<td>271</td>
</tr>
<tr>
<td>10.3 Crack Control</td>
<td>271</td>
</tr>
<tr>
<td>10.4 Control Joints</td>
<td>272</td>
</tr>
<tr>
<td>10.5 Expansion Joints</td>
<td>279</td>
</tr>
<tr>
<td>10.6 Summary</td>
<td>279</td>
</tr>
<tr>
<td>10.7 Crack Repair</td>
<td>280</td>
</tr>
</tbody>
</table>

Chapter 11. Construction in Severe Weather Conditions

Chapter 11

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Cold Weather Masonry Construction</td>
<td>281</td>
</tr>
<tr>
<td>11.1.1 General</td>
<td>281</td>
</tr>
<tr>
<td>11.1.2 Construction</td>
<td>281</td>
</tr>
<tr>
<td>11.1.3 Placing Grout and Protection of Grouted Masonry</td>
<td>282</td>
</tr>
<tr>
<td>11.1.4 Protection</td>
<td>283</td>
</tr>
<tr>
<td>11.1.5 Summary of Recommended Cold Weather Practices</td>
<td>284</td>
</tr>
<tr>
<td>11.2 Hot Weather Masonry Construction</td>
<td>287</td>
</tr>
<tr>
<td>11.2.1 General</td>
<td>287</td>
</tr>
</tbody>
</table>
Table of Contents

11.2.2 Performance--287
11.2.3 Handling and Selection of Materials--------288
11.2.4 Construction Procedure------------------------289
11.2.5 Summary of Recommended Hot Weather Practices--------291
11.3 Wet Weather Masonry Construction---------292
11.3.1 General--292
11.3.2 Performance--292
11.3.3 Construction Procedures--------------------------293
11.3.4 Protection of Masonry--------------------------293

CHAPTER 12. MASONRY INSPECTION CHECKLIST---------295

12.1 General--295
12.2 Inspector’s Checklist--------------------------------------295
12.2.1 Pre–Construction Verification--------------------295
12.2.2 Start–Up Observations-----------------------------296
12.2.3 Pre–Placement Observations--------------------297
12.2.4 Workmanship---299
12.2.5 Construction Details--------------------------------303

CHAPTER 13. MASONRY UNITS--------------------------------------309

13.1 ICC-ES Evaluation Reports-----------------------------309
13.2 Typical Concrete Masonry Units-----------------------310
13.2.1 Precision Units---------------------------------------310
13.2.2 Slumped Blocks--------------------------------------310
13.2.3 Custom Face Units----------------------------------330
13.2.4 Split Face Units--------------------------------------331
13.2.5 Ground Faced (Burnished) Units----------------333
13.2.6 Special Proprietary Units--------------------------333
13.3 Length, Height and Quantities in Concrete Masonry Walls--334
13.3.1 Length and Height of Walls------------------------334
13.3.2 Quantities of Materials-----------------------------337

CHAPTER 14. GLOSSARY OF TERMS--------------------------------------339
CHAPTER 15. REFERENCES---367

CHAPTER 16. INDEX---371
ACKNOWLEDGEMENTS

The Masonry Institute of America appreciates the past review and suggestions received by the American Construction Inspectors Association and its Board of Registered Construction Inspectors. Input from James E. Amrhein and Donald A. Wakefield in previous editions of this book are incorporated into this edition.

Special appreciation is extended to those who have reviewed this and previous editions of this book. Their suggestions have contributed to technical content and editorial correctness. Reviewers include Gregg Borchelt, James Feagin, William Fitzjohn, Phillip Samblanet, Kurt Siggard, Roger Utesch and Dan Zechmeister.

The Masonry Institute of America and the author also acknowledge the expertise of staff which include Thomas Escobar, Design Director; Luis Dominguez, Production Manager and Debby Chrysler, Proofing Specialist for their input which makes this publication the most recognized reference for concrete masonry inspection.
The Masonry Institute of America, founded in 1957 under the name of Masonry Research, is a promotional, technical research organization established to improve and extend the use of masonry. The Masonry Institute of America is supported by the California masonry contractors through labor agreement contracts between the unions and contractors.

The Masonry Institute of America is active in California and throughout the United States promoting new ideas and masonry work, improving national and local building codes, conducting research projects, presenting design, construction and inspection seminars and writing technical and non-technical papers, all for the purpose of improving the masonry industry.

The Masonry Institute of America does not engage in the practice of architectural or engineering design or construction nor does it sell masonry materials.
The International Code Council (ICC) was established in 1994 as a non-profit organization dedicated to developing a single set of comprehensive and coordinated national model construction codes. The founders of the ICC are Building Officials and Code Administrators International, Inc. (BOCA), International Conference of Building Officials (ICBO), and Southern Building Code Congress International, Inc. (SBCCI). Since the early part of the last century, these non-profit organizations developed three separate sets of model codes used throughout the United States. Although regional code development has been effective and responsive to our country’s needs, the time came for a single set of codes. The nation’s three model code groups responded by creating the International Code Council and by developing codes without regional limitations; the International Codes.

The ICC has developed and made available an impressive inventory of comprehensive and coordinated International Codes, including:

- International Building Code®
- International Residential Code® for One- and Two-Family Dwellings
- International Fire Code®
- International Energy Conservation Code®
- International Plumbing Code®
- International Private Sewage Disposal Code®
- International Mechanical Code®
- International Fuel Gas Code®
- International Wildland-Urban Interface Code®
- International Existing Building Code®
- ICC Performance Code® for Buildings and Facilities
- International Property Maintenance Code®
The International Code Council offers unmatched technical, educational and informational products and services in support of the International Codes, with more than 250 highly qualified staff members at 16 offices throughout the United States and in Latin America. Some of the products and services readily available to code users include:

- Code application assistance
- Educational programs
- Certification programs
- Technical handbooks and workbooks
- Plan review
- Automated products
- Monthly magazines and newsletters
- Publication of proposed code changes
- Training and informational videos
MASONRY STANDARDS JOINT COMMITTEE

The Masonry Standards Joint Committee (MSJC) is an organization comprised of volunteers who through background, use, and education have established experience in the manufacturing of masonry units and materials and the design and construction of masonry structures.

Working under its three sponsoring organizations, The Masonry Society (TMS), the American Concrete Institute (ACI), and the American Society of Civil Engineers (ASCE) the Committee has been charged with developing and maintaining consensus standards suitable for adoption into model building codes. Since The Masonry Society has received ANSI accreditation, TMS has become the lead sponsor in the production of the MSJC Code and Specification.

In the pursuit of its goals, Committee activities include:

1. Evaluate and ballot proposed changes to existing standards of the Committee.
2. Develop and ballot new standards for masonry.
3. Resolve negative votes from ballot items.
4. Identify areas of needed research.
5. Monitor international standards

Reinforced Concrete Masonry Construction Inspector's Handbook

THE MASONRY SOCIETY

The Masonry Society (TMS), founded in 1977, is an international gathering of people interested in masonry. It is a professional, technical, and educational association dedicated to the advancement of knowledge on masonry. TMS members are design engineers, architects, builders, researchers, educators, building officials, material suppliers, manufacturers, and others who want to contribute to and benefit from the global pool of knowledge on masonry.

AMERICAN CONCRETE INSTITUTE

The American Concrete Institute (ACI) is a nonprofit technical and educational society founded in 1904 with 99 chapters and 20,000 members spanning 108 countries.

As ACI moves into its second century of progress through knowledge, it has retained the same basic mission: “Provide knowledge and information for the best use of concrete”.

AMERICAN SOCIETY OF CIVIL ENGINEERS

The American Society of Civil Engineers (ASCE) was founded in 1852 and currently represents 140,000 members of the civil engineering profession worldwide and is America’s oldest national engineering society. ASCE’s vision is to position engineers as industry leaders building a better quality of life.

To provide essential value to members, their careers, partners and the public, ASCE develops leadership, advances technology, advocates lifelong learning, and promotes the profession.

XX