Suggestions for Improvement

Comments and suggestions for improvements are welcome and should be sent to the following:

Structural Engineers Association of California (SEAOC)
Don Schinske, Executive Director
921 11th Street, Suite 1100
Sacramento, California 95814
Telephone: (916) 447-1198; Fax: (916) 444-1501
E-mail: dschinske@seaoc.org

Errata Notification

SEAOC has made a substantial effort to ensure that the information in this document is accurate. In the event that corrections or clarifications are needed, these will be posted on the SEAOC web site at www.seaoc.org and on the ICC web site at www.iccsafe.org.

SEAOC, at its sole discretion, may issue written errata.
Table of Contents

Preface to the 2015 *IBC SEAOC Structural/Seismic Design Manual* .. vii
Preface to Volume 3 ... ix
Acknowledgements .. xi
References ... xiii
How to Use This Document ... xvii

Design Example 1
Reinforced Concrete Wall ... 1

Design Example 2
Reinforced Concrete Wall with Coupling Beams .. 27

Design Example 3
Reinforced Concrete Special Moment Frame .. 71

Design Example 4
Reinforced Concrete Parking Garage .. 111

Design Example 5
Pile Foundation ... 173

Design Example 6
Design of Concrete Diaphragm and Collector ... 189
Preface to the 2015 IBC SEAOC Structural/Seismic Design Manual

The IBC SEAOC Structural/Seismic Design Manual, throughout its many editions, has served the purpose of illustrating good seismic design and the correct application of building-code provisions. The manual has bridged the gap between the discursive treatment of topics in the SEAOC Blue Book (Recommended Lateral Force Requirements and Commentary) and real-world decisions that designers face in their practice.

The examples illustrate code-compliant designs engineered to achieve good performance under severe seismic loading. In some cases simply complying with building-code requirements does not ensure good seismic response. This manual takes the approach of exceeding the minimum code requirements in such cases, with discussion of the reasons for doing so.

This edition comprises five volumes:

- Volume 1: Code Application Examples
- Volume 2: Examples for Light-Frame, Tilt-Up, and Masonry Buildings
- Volume 3: Examples for Reinforced Concrete Buildings
- Volume 4: Examples for Steel-Framed Buildings
- Volume 5: Examples for Seismically Isolated Buildings and Buildings with Supplemental Damping

In general, the provisions for developing the design base shear, distributing the base-shear-forces vertically and horizontally, checking for irregularities, etc., are illustrated in Volume 1. The other volumes contain more extensive design examples that address the requirements of the material standards (for example, ACI 318 and AISC 341) that are adopted by the IBC. Building design examples do not illustrate many of the items addressed in Volume 1 in order to permit the inclusion of less-redundant content.

Each volume has been produced by a small group of authors under the direction of a manager. The managers have assembled reviewers to ensure coordination with other SEAOC work and publications, most notably the Blue Book, as well as numerical accuracy.

This manual can serve as valuable tool for engineers seeking to design buildings for good seismic response.

Rafael Sabelli
Project Manager
Preface to Volume 3

Volume 3 of the 2015 *IBC SEAOC Structural/Seismic Design Manual* illustrates the design requirements for reinforced concrete shear wall and moment-frame seismic systems, and also important interfaces with the rest of the structure.

The design examples in this volume represent a range of structural systems and seismic systems. The design of each of these systems is governed by standards developed by the American Concrete Institute (ACI) in ACI 318. The methods illustrated herein represent approaches consistent with the ductility expectations for each system and with the desired seismic response. In most cases there are several details or mechanisms that can be utilized to achieve the ductility and resistance required, and the author of each example has selected an appropriate option. In many cases alternatives are discussed. This manual is not intended to serve as a building code, nor to be an exhaustive catalogue of all valid approaches and details.

The manual is presented as a set of examples in which the engineer has considered the building-code requirements in conjunction with the optimal seismic response of the system. The examples follow the recommendations of the SEAOC Blue Book and other SEAOC recommendations. The examples are intended to aid conscientious designers in crafting designs that are likely to achieve good seismic performance consistent with expectations inherent in the requirements for the systems.

Three examples have been included in past editions of this manual and are updated in this edition: reinforced concrete shear wall, reinforced concrete shear wall with coupling beams, and reinforced concrete special moment frame. Three examples are new and are included in this edition of the manual: reinforced concrete parking garage, reinforced concrete pile foundation, and reinforced concrete diaphragms and collectors.

Jon P. Kiland
Volume 3 Manager
Acknowledgements

Volume 3 of the 2015 IBC SEAOC Structural/Seismic Design Manual was written by a group of highly qualified structural engineers, chosen for their knowledge and experience with structural engineering practice and seismic design. The authors are

Joe Maffei, S.E., Ph.D., LEED AP, Principal, Maffei Structural Engineering—Examples 1 and 2
With 32 years of experience in research and practice, Joe is an expert on the seismic evaluation, design, and retrofitting of structures. He has directed a range of projects, including those using innovative solutions and advanced methods of evaluation. The American Society of Civil Engineers and the American Concrete Institute have appointed Joe to committees writing structural code provisions. www.maffei-structure.com

Karl Telleen, S.E., Maffei Structural Engineering—Examples 1 and 2
Karl has 11 years of experience including seismic retrofit of concrete buildings as well as design of new structures. He completed a Fulbright Fellowship in Switzerland in 2010, and he performed post-earthquake reconnaissance in Haiti following the January 2010 earthquake. He participated in the ATC-94 project studying the performance of concrete buildings in the 2010 Chile earthquake. Karl currently serves on the SEAONC Board of Directors. www.maffei-structure.com

Jon P. Kiland, S.E., IDA Structural Engineers—Volume 3 Manager and Example 3
Jon has 35 years of experience as a structural design and consulting engineer in Northern California. His practice has included extensive experience in seismic analysis and evaluation of existing buildings, the design of new construction, and the seismic strengthening and rehabilitation of existing building projects.

He is a Past President of the Structural Engineers Association of California and Structural Engineers Association of Northern California, and a Fellow Member of both organizations. His current committee assignments include the ASCE-7-16 Seismic Sub-Committee (SSC), and chairing of the TC-2 General Provisions task committee of SSC. www.ida-se.com

Jeremiah has been with Hohbach-Lewin since 2002 and works in their Eugene, Oregon, office. His experience includes analysis and design of concrete structures using traditional and performance-based methods. Prior to joining Hohbach-Lewin, Jeremiah developed probabilistic hazard assessments and loss models for the re-insurance industry. He is a registered Structural Engineer in California and Oregon. Jeremiah has a Masters in Structural Engineering from Stanford University. www.hohbach-lewin.com

Stephen Harris, S.E., Principal, Simpson Gumpertz & Heger Inc.—Example 5
Stephen Harris has practiced structural engineering for over 29 years. He is a graduate of the University of California at Davis and a registered Structural Engineer in California, Oregon, and Hawaii. His experience includes design of new structures, seismic strengthening of existing structures and design of pile foundation systems. www.sgh.com
Badri Prasad, S.E., Vice President, TTG Engineers—Example 6
Badri received his BS degree from Bangalore University, India, and MS degree from Mysore University, India. He also obtained his MS degree from the University of Arizona. He is currently a Vice President and Branch Manager—Structural at TTG Engineers, San Francisco, California. He is a registered SE in California and registered PE in Washington State. He has 28 years of experience in the design of various types of structures, such as healthcare facilities, biotechnology facilities, mid- and high-rise structures, schools, and seismic retrofit, among others. He is a member of the SEAONC Seismology Committee’s concrete subcommittee and was instrumental in publishing the committee’s work titled “Concrete Slab as a Collector Element” in the 2008 SEAOC Blue Book. He is also the project manager for this guide. He has published several papers on buckling restrained braced frames and a research paper on base-isolation system.

Additionally, a number of SEAOC members and other structural engineers helped check the examples in this volume. During its development, drafts of the examples were sent to these individuals. Their help was sought in review of code interpretations as well as detailed checking of the numerical computations. The reviewers include:

- Russell Berkowitz
- Anindya Dutta
- Tim Hart
- Mark Jokerst
- Jon Kiland
- Yixia Liu
- Ted Zsutty

Close collaboration with the SEAOC Seismology Committee was maintained during the development of the document. The Seismology Committee has reviewed the document and provided many helpful comments and suggestions. Their assistance is gratefully acknowledged.

Production and art was provided by the International Code Council.
References

Standards

Other References

How to Use This Document

Equation numbers in the right-hand margin refer to the one of the standards (e.g., ACI 318, ASCE 7 or IBC). The default standard is given in the heading of each section of each example; equation numbers in that section refer to that standard unless another standard is explicitly cited.

Abbreviations used in the “Code Reference” column are

§ – Section T – Table
F – Figure Eq – Equation