CHAPTER **2**

Load Combinations

Problem 2.1

SOLUTION

 Table P2.1
 Summary of Load Combinations Using Strength Design for Beam in Problem 2.1

		Load Combination		
IBC Equation No.	Equation	Exterior Negative	Positive	Interior Negative
16-1	1.4 <i>D</i>	-18.6	61.5	-74.5
16-2	1.2 <i>D</i> + 1.6 <i>L</i>	-36.6	120.7	-146.4
16-3, 16-4, 16-5	1.2 <i>D</i> + 0.5 <i>L</i>	-22.4	73.9	-89.6
16-6, 16-7	0.9 <i>D</i>	-12.0	39.5	-47.9

Problem 2.2

SOLUTION

Table P2.2Summary of Load Combinations Using Strength Design for Beam in
Problem 2.2

		Load Combination			
IBC Equation No.	Equation	Bending Moment		Shear Force	
NO.		Support	Midspan	Support	
16-1	1.4 <i>D</i>	-80.6	57.5	16.5	
16-2	1.2 <i>D</i> + 1.6 <i>L</i>	-105.1	75.2	21.5	
16-3	1.2 <i>D</i> + 0.5 <i>L</i>	-80.4	57.4	16.5	
	1.2 <i>D</i> + 0.5 <i>W</i>	-42.1	49.3	11.8	
	1.2 <i>D</i> – 0.5 <i>W</i>	-96.1	49.3	16.6	
16-4	1.2 <i>D</i> + 1.0 <i>W</i> + 0.5 <i>L</i>	-26.4	57.4	11.7	
	1.2 <i>D</i> – 1.0 <i>W</i> + 0.5 <i>L</i>	-134.4	57.4	21.3	
16-5	1.2 <i>D</i> + 0.5 <i>L</i>	-80.4	57.4	16.5	
16-6	0.9 <i>D</i> + 1.0 <i>W</i>	2.2	37.0	5.8	
	0.9 <i>D</i> – 1.0 <i>W</i>	-105.8	37.0	15.4	
16-7	0.9 <i>D</i>	-51.8	37.0	10.6	

Problem 2.3

SOLUT	ION
-------	-----

Table P2.3Summary of Load Combinations Using Basic Allowable Stress Design for
Beam in Problem 2.3

		Load Combination		
IBC Equation No.	Equation	Bending Moment		Shear Force
110.		Support	Midspan	Support
16-8, 16-10	D	-57.6	41.1	11.8
16-9	D + L	-80.1	57.3	16.4
16-11, 16-14	D + 0.75L	-74.5	53.3	15.3
16-12	D + 0.6W	-25.2	41.1	8.9
	D – 0.6W	-90.0	41.1	14.7
16-13	D + 0.75(0.6W) + 0.75L	-50.2	53.3	13.1
	D - 0.75(0.6W) + 0.75L	-98.8	53.3	17.4
16-15	0.6 <i>D</i> + 0.6 <i>W</i>	-2.2	24.7	4.2
	0.6 <i>D</i> – 0.6 <i>W</i>	-67.0	24.7	10.0
16-16	0.6 <i>D</i>	-34.6	24.7	7.1

Problem 2.4

SOLUTION

Table P2.4Summary of Load Combinations Using Alternative Basic Allowable StressDesign for Beam in Problem 2.4

IDC Equation		Load Combination			
IBC Equation No.	Equation	Bending Moment		Shear Force	
		Support	Midspan	Support	
16-17, 16-21	D + L	-80.1	57.3	16.4	
16-18, 16-19	$D + L + 0.6\omega W$	-38.0	57.3	12.7	
	$D + L - 0.6\omega W$	-122.2	57.3	20.1	
16-20	$D + L + 0.6\omega W/2$	-59.0	57.3	14.5	
	$D + L - 0.6\omega W/2$	-101.2	57.3	18.3	
16-22	0.9 <i>D</i>	-51.8	37.0	10.6	

Problem 2.5

SOLUTION

Because the live loads on the floors are equal to 100 psf, $f_1 = 0.5$.

The seismic load effect, *E*, is determined as follows:

For use in IBC Equation 16-5: $E = E_h + E_v = \rho Q_E + 0.2 S_{DS} D$

$$= (1.0 \times Q_E) + (0.2 \times 0.41 \times D) = Q_E + 0.08D$$

For use in IBC Equation 16-7: $E = E_h - E_v = \rho Q_E - 0.2 S_{DS} D$

$$= (1.0 \times Q_E) - (0.2 \times 0.41 \times D) = Q_E - 0.08D$$

Substituting for *E*, IBC Equation 16-5 becomes: $1.2D + Q_E + 0.08D + 0.5L = 1.28D + Q_E + 0.5L$ Similarly, IBC Equation 16-7 becomes: $0.9D + Q_E - 0.08D = 0.82D + Q_E$

Table P2.5Summary of Load Combinations Using Strength Design for Column in
Problem 2.5

	Equation	Load Combination			
IBC Equation No.		Axial Force	Bending Moment	Shear Force	
16-1	1.4 <i>D</i>	235.1	29.8	3.2	
16-2	$1.2D + 1.6L + 0.5L_r$	275.3	59.2	6.3	
	1.2 <i>D</i> + 1.6 <i>L</i> _r + 0.5 <i>L</i>	246.1	36.1	3.9	
16-3	$1.2D + 1.6 L_r + 0.5W$	232.1	86.1	8.3	
	$1.2D + 1.6 L_r - 0.5W$	218.5	-34.9	-2.8	
16-4	$1.2D + 1.0W + 0.5L + 0.5L_r$	243.3	157.1	15.0	
	$1.2D - 1.0W + 0.5L + 0.5L_r$	216.1	-84.9	-7.2	
16-5	$1.28D + Q_E + 0.5L$	272.1	469.9	46.2	
	$1.28D - Q_E + 0.5L$	199.3	-394.3	-38.2	
16-6	0.9 <i>D</i> + 1.0 <i>W</i>	164.7	140.2	13.2	
	0.9 <i>D</i> – 1.0 <i>W</i>	137.5	-101.8	-9.0	
16-7	$0.82D + Q_E$	174.1	449.6	44.1	
	$0.82D - Q_{E}$	101.3	-414.6	-40.3	

Problem 2.6

SOLUTION

Because the shear wall is in a parking garage, $f_1 = 1.0$.

The seismic load effect, E, is determined as follows:

For use in IBC Equation 16-5: $E = E_h + E_v = \rho Q_E + 0.2S_{DS}D$

$$= (1.0 \times Q_E) + (0.2 \times 1.0 \times D) = Q_E + 0.2D$$

For use in IBC Equation 16-7: $E = E_h - E_v = \rho Q_E - 0.2 S_{DS} D$ = $(1.0 \times Q_E) - (0.2 \times 1.0 \times D) = Q_E - 0.2 D$

Substituting for *E*, IBC Equation 16-5 becomes: $1.2D + Q_E + 0.2D + 1.0L = 1.4D + Q_E + 1.0L$. Similarly, IBC Equation 16-7 becomes: $0.9D + Q_E - 0.2D = 0.7D + Q_E$

Table P2.6Summary of Load Combinations Using Strength Design for Shear Wall in
Problem 2.6

IBC Equation	Equation	Load Combination		
IBC Equation No.		Axial Force	Bending Moment	Shear Force
16-1	1.4 <i>D</i>	903.0	0	0
16-2	1.2 <i>D</i> + 1.6 <i>L</i>	1,012.4	0	0
16-3, 16-4	1.2 <i>D</i> + 1.0 <i>L</i>	923.0	0	0
16-5	$1.4D + Q_E + 1.0L$	1,052.0	4,280.0	143.0
	1.4 <i>D</i> – <i>Q_E</i> + 1.0 <i>L</i>	1,052.0	-4,280.0	-143.0
16-6	0.9 <i>D</i>	580.5	0	0
16-7	$0.7D + Q_E$	451.5	4,280.0	143.0
	0.7 <i>D</i> – <i>Q_E</i>	451.5	-4,280.0	-143.0

Problem 2.7

SOLUTION

The governing load combination in IBC 1605.2 is Equation 16-2:

Negative bending moment:

 $1.2D + 1.6L = (1.2 \times 80.6) + (1.6 \times 42.1) = 164.1$ ft-kips

Positive bending moment:

 $1.2D + 1.6L = (1.2 \times 53.7) + (1.6 \times 30.4) = 113.1$ ft-kips

Shear force:

 $1.2D + 1.6L = (1.2 \times 29.7) + (1.6 \times 19.0) = 66.0$ kips

Chapter 2

The following basic combinations for strength design with overstrength are also applicable:

• $(1.2 + 0.2S_{DS}) D + \Omega_0 Q_E + 1.0L$ Axial force: $\Omega_0 Q_E = 2.0 \times 241 = 482$ kips tension or compression Negative bending moment: $(1.2 + 0.2S_{DS})D + 1.0L = (1.38 \times 80.6) + (1.0 \times 42.1) = 153.3$ ft-kips Positive bending moment: $(1.2 + 0.2S_{DS})D + 1.0L = (1.38 \times 53.7) + (1.0 \times 30.4) = 104.5$ ft-kips Shear force: $(1.2 + 0.2S_{DS})D + 1.0L = (1.38 \times 29.7) + (1.0 \times 19.0) = 60.0$ kips Note that the load factor on *L* must be equal to 1.0 because of the assembly occupancy.

• $(0.9 - 0.2S_{DS})D + \Omega_0 Q_E$ Axial force: $\Omega_0 Q_E = 2.0 \times 241 = 482$ kips tension or compression Negative bending moment: $(0.9 - 0.2S_{DS})D = 0.72 \times 80.6 = 58.0$ ft-kips Positive bending moment: $(0.9 - 0.2S_{DS})D = 0.72 \times 53.7 = 38.7$ ft-kips Shear force: $(0.9 - 0.2S_{DS})D = 0.72 \times 29.7 = 21.4$ kips

Problem 2.8

SOLUTION

The governing load combination in IBC 1605.3.1 is Equation 16-9:

Negative bending moment:

D + L = 80.6 + 42.1 = 122.7 ft-kips

Positive bending moment:

D + L = 53.7 + 30.4 = 84.1 ft-kips

Shear force:

D + L = 29.7 + 19.0 = 48.7 kips

The following basic allowable stress design load combinations with overstrength are also applicable:

Axial force:

 $0.525\Omega_o Q_E = 0.525 \times 2.0 \times 241 = 253.1$ kips tension or compression

Negative bending moment:

 $1.1D + 0.75L = (1.1 \times 80.6) + (0.75 \times 42.1) = 120.2$ ft-kips

Positive bending moment:

 $1.1D + 0.75L = (1.1 \times 53.7) + (0.75 \times 30.4) = 81.9$ ft-kips Shear force:

 $1.1D + 0.75L = (1.1 \times 29.7) + (0.75 \times 19.0) = 46.9$ kips

• $(0.6 - 0.14S_{DS})D + 0.7\Omega_O Q_E$

Axial force:

 $0.7\Omega_{O}Q_{E} = 0.7 \times 2.0 \times 241 = 337.4$ kips tension or compression Negative bending moment: $(0.6 - 0.14S_{DS})D = 0.47 \times 80.6 = 37.9$ ft-kips Positive bending moment: $(0.6 - 0.14S_{DS})D = 0.47 \times 53.7 = 25.2$ ft-kips Shear force: $(0.6 - 0.14S_{DS})D = 0.47 \times 29.7 = 14.0$ kips

6