Multiply the height of your column by the number that corresponds to the diameter to determine the cubic yards needed.

Diameter		CY	Diameter		
$8^{\prime \prime}$.013	$20^{\prime \prime}$.081	CY	$32^{\prime \prime}$
$9^{\prime \prime}$.016	$21^{\prime \prime}$.089	$33^{\prime \prime}$.207
$10^{\prime \prime}$.020	$22^{\prime \prime}$.097	$34^{\prime \prime}$.232
$11^{\prime \prime}$.024	$23^{\prime \prime}$.107	$35^{\prime \prime}$.248
$12^{\prime \prime}$.029	$24^{\prime \prime}$.116	$36^{\prime \prime}$.262
$13^{\prime \prime}$.034	$25^{\prime \prime}$.126	$37^{\prime \prime}$.276
$14^{\prime \prime}$.040	$26^{\prime \prime}$.137	$38^{\prime \prime}$.292
$15^{\prime \prime}$.045	$27^{\prime \prime}$.147	$39^{\prime \prime}$.307
$16^{\prime \prime}$.051	$28^{\prime \prime}$.158	$40^{\prime \prime}$.322
$17^{\prime \prime}$.058	$29^{\prime \prime}$.170	$41^{\prime \prime}$.340
$18^{\prime \prime}$.065	$30^{\prime \prime}$.181	$42^{\prime \prime}$.356
$19^{\prime \prime}$.073		$31^{\prime \prime}$.193	$43^{\prime \prime}$

Table for Estimating Concrete-This table shows the amount of concrete required, in cubic yards, for 1 foot of height of cylinders of various diameters.

Concrete for Footing					
		CY's per Linear Foot			
		Width of Footing (in.)			
		12"	$15^{\prime \prime}$	18"	$24^{\prime \prime}$
	$6^{\prime \prime}$. 019	. 023	. 028	. 037
	$8^{\prime \prime}$. 025	. 031	. 037	. 049
	$9^{\prime \prime}$. 028	. 035	. 042	. 056
	$10^{\prime \prime}$. 031	. 039	. 046	. 062
	$12^{\prime \prime}$. 037	. 046	. 056	. 074
	$18^{\prime \prime}$. 056	. 069	. 083	. 111
	$24^{\prime \prime}$. 074	. 093	. 111	. 148
	$30^{\prime \prime}$. 093	. 116	. 139	. 185
	$36^{\prime \prime}$. 111	. 139	. 167	. 222
	$42^{\prime \prime}$. 13	. 162	. 194	. 259
	$48^{\prime \prime}$. 148	. 185	. 222	. 296
	$54^{\prime \prime}$. 167	. 208	. 25	. 333
	$60^{\prime \prime}$. 185	. 231	. 278	. 37
	$66^{\prime \prime}$. 204	. 255	. 306	. 407
	$72^{\prime \prime}$. 222	. 278	. 333	. 444
	$78^{\prime \prime}$. 241	. 301	. 361	. 481
	$84^{\prime \prime}$. 259	. 324	. 389	. 519
	$90^{\prime \prime}$. 278	. 347	. 417	. 556

Using the Formula

(1) Add the total linear feet (LF) of footings.
(2) Multiply the LF by the width of the footings.
(3) Multiply area by depth of the footings.

4 Divide the cubic feet by 27 to find the cubic yards.

Using the Table

(1) Identify the factor in the table based on the depth and width of your footing.

2 Multiply the LF by the factor to determine how many cubic yards of concrete you need.

CONCRETE SLUMP

Determine the Slump of Concrete

Take a sampling of concrete and place it into the cone intended for this purpose.
2 Place the concrete into the cone in three equal layers and rod each layer 25 times to consolidate the concrete. Ten Ibs. of water per cubic yard of concrete will increase the slump by approximately 1 ". A gallon of water weighs 8.33 lbs .
3 Empty the concrete from the cone.
4 Place the cone to the side of the concrete.
5 After the concrete has settled, place a level across the top of the cone.

6
Measure from the bottom of the level to the top of the concrete-the measurement is the "Slump of the Concrete."

Increase the Slump of Concrete
Total Cubic Yards x Increase (inches)
How many gallons of water should be added to 12 cubic yards of concrete if the slump needs to be increased by $1.5^{\prime \prime}$?

Multiply the total cubic yards of concrete by the number of inches the slump is increased.
$12 \times 1.5=18$
(2) Multiply the product of Step 1 by 10.
$18 \times 10=180 \mathrm{lbs}$. of water
(3) Divide the total pounds of water (product from Step 2) needed by 8.33.
$180 \div 8.33=21.60$ gallons of water

Rebar Weight

Weight = LF of Bar x Weight per LF

Rebar Lap
Lap = Bar Diameter x Specified Lap

Calculate the overlap for \#5 bar with a specified bar lap of 25 d .
Diameter is $5 / 8$ or .625
Determine bar lap $=25$
$25 \times .625=15.625^{\prime \prime}$
Note: Specified to be overlapped 15-5/8"

Convert Gallons of Water into Pounds Pounds = Gallons of Water x 8.33

Calculate the pounds of water in 45 gallons of water.

Gallons of water $\times 8.33$.
$45 \times 8.33=374.85$ pounds
Note: A gallon of water weighs 8.33 lbs .

Convert Pounds of Water into Gallons Gallons = Pounds of Water $\div 8.33$

Calculate the number of gallons in 233 pounds of water.

Pounds of water $\div 8.33$.
233 divided by $8.33=27.97$ gallons
Note: A gallon of water weighs 8.33 lbs .

Brick Multiplier: $\frac{144}{\mathrm{H} \times \mathrm{L} \text { of brick* }}$		Brick Quantity:	Area* x Multiplier
${ }^{*}$ Must add mortar to one side and joint first			${ }^{*}$ Deduct for openings

Calculating Quantity of Brick

(1) Add mortar to one side and one joint to face dimensions of the brick.
2) Multiply the Height of the brick by the Length of the brick to determine face area in square inches (or use the table).
(3) Divide 144 square inches by the face area of the brick. (This is the multiplier-how many brick you
(4) Calculate the area of the space for installing brick. Deduct the square feet of the openings.

5 Multiply the area by the brick multiplier (can be found on the next page).
(Add 5% to 10% for waste.
Using the Table to Calculate Brick Quantity

	Brick Size			Mortar Joint				
Type	Height	Length	Width	1/4"	3/8"	1/2"	5/8"	3/4"
Common	$21 / 4^{\prime \prime}$	$8{ }^{\prime \prime}$	3 3/4"	7	6.6	6.2	5.8	5.5
Large St	$15 / 8^{\prime \prime}$	15 3/4"	$33 / 4^{\prime \prime}$	4.8	4.5	4.2	3.9	3.3
Small St	$11 / 4^{\prime \prime}$	8"	$33 / 4^{\prime \prime}$	5.3	5.1	4.8	4.5	4.3
Jumbo	21/8"	$11^{1 / 2} 2^{\prime \prime}$	$51 / 2^{\prime \prime}$	1.16	1.05	9.7	4.1	3.9
Norman	$23 / 4 "$	$83 / 4{ }^{\prime \prime}$	4"	5.2	4.9	4.6	4.3	4.1
Roman	$21 / 4^{\prime \prime}$	$11^{1 / 2} 2^{\prime \prime}$	$33 / 4^{\prime \prime}$	4.9	4.6	4.4	4.1	3.9

Calculate the quantity of brick to be installed on 4000 square feet. You are installing a Common Brick with a $1 / 4^{\prime \prime}$ mortar joint.
(1) Find the number that corresponds to your mortar joint and brick type.

The number is 7 . This is the number of bricks needed to cover one square foot.
2 Multiply this number by the area for which you will be installing brick.
$7 \times 4000=28,000$
NOTE: Don't forget to deduct for openings and factor in waste.

Quantity(CF) of mortar required to lay 1000 Bricks						
Joint Thickness (inches)	$4^{\prime \prime}$	$8^{\prime \prime}$	$12^{\prime \prime}$	$16^{\prime \prime}$	$20^{\prime \prime}$	$24^{\prime \prime}$
$1 / 8^{\prime \prime}$	2.9	5.6	6.5	7.1	7.3	7.5
$1 / 4^{\prime \prime}$	5.7	8.7	9.7	10.2	10.5	10.7
$3 / 8^{\prime \prime}$	8.7	11.8	12.9	13.4	13.7	14
$1 / 2^{\prime \prime}$	11.7	15	16.2	16.8	17.1	17.3
$5 / 8^{\prime \prime}$	14.8	18.3	19.5	20.1	20.5	20.7
$3 / 4^{\prime \prime}$	17.9	21.7	23	23.6	24	24.2
$7 / 8^{\prime \prime}$	21.1	25.1	26.5	27.1	27.5	27.8
$1^{\prime \prime}$	24.4	28.6	30.1	30.8	31.2	31.5

What CF of mortar is needed to install 7600 bricks? Wall thickness is $4^{\prime \prime}$ and the mortar joint is $1 / 8^{\prime \prime}$.
(1) Identify the joint thickness.

Go to $1 / 8^{\prime \prime}$
(2)

Identify the thickness of your wall.
Follow across to $4^{\prime \prime}$ thickness
(3)

Identify the multiplier that corresponds with Step 1 \& Step 2.
Multiplier is 2.9
4 Divide the total number of bricks you are installing by 1000.
$7600 \div 1000=7.6$
(5)

Use the multiplier from Step 3 to multiply by the number from Step 4. This is the CF of mortar.
$2.9 \times 7.6=22.04$ CF of mortar

Calculate Masonry Cement

Cement = CF of Mortar x 0.5
ex.
Calculate the number of bags of cement needed to install 23,000 bricks if the wall thickness is 4 " with $3 / 8^{\prime \prime}$ mortar joint.
(1)

Determine the Cubic Feet of mortar needed based on the table.
$23,000 \div 1000 \times 8.7=200$
(2) Multiply the CF of mortar needed by 0.5 .
$200 \times 0.5=100$ bags

Calculate Pounds of Sand
Sand = CF of Mortar x 100
ex.
Calculate the pounds of sand needed to install 23,000 bricks if the wall thickness is 4 " with 3/8" mortar joint.

Determine the Cubic Feet of mortar needed based on the table.
$23,000 \div 1000 \times 8.7=200$
(2) Multiply the CF of mortar needed by 100. $200 \times 100=20,000$ pounds

