2008 EDITION
ANSI/AF&PA SDPWS-2008
Approval Date: AUGUST 4, 2008

ASD/LRFD
WIND & SEISMIC
SPECIAL DESIGN PROVISIONS
FOR WIND AND SEISMIC
WITH COMMENTARY
TABLE OF CONTENTS

Chapter/Title .. Page
1 Designer Flowchart .. 1
 1.1 Flowchart ... 1
2 General Design Requirements 3
 2.1 General .. 3
 2.2 Terminology .. 3
 2.3 Notation ... 4
3 Members and Connections 7
 3.1 Framing ... 7
 3.2 Sheathing .. 7
 3.3 Connections 7

4 Lateral Force-Resisting Systems 11
 4.1 General ... 11
 4.2 Wood-Frame Diaphragms 12
 4.3 Wood-Frame Shear Walls 13
 4.4 Wood Structural Panels Designed to Resist Combined Shear and Uplift from Wind

Appendix A .. 41
References .. 43
Commentary ... 45

LIST OF TABLES

<table>
<thead>
<tr>
<th>List of Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1.1 Wall Stud Repetitive Member Factors .. 8</td>
<td>4.3.4</td>
</tr>
<tr>
<td>3.2.1 Nominal Uniform Load Capacities (psf) for Wall Sheathing Resisting Out-of-Plane Wind Loads ... 9</td>
<td>4.3A</td>
</tr>
<tr>
<td>3.2.2 Nominal Uniform Load Capacities (psf) for Roof Sheathing Resisting Out-of-Plane Wind Loads ... 10</td>
<td>4.3B</td>
</tr>
<tr>
<td>4.2.4 Maximum Diaphragm Aspect Ratios (Horizontal or Sloped Diaphragms) 14</td>
<td>4.3C</td>
</tr>
<tr>
<td>4.2A Nominal Unit Shear Capacities for Wood-Frame Diaphragms (Blocked Wood Structural Panel Diaphragms) .. 18</td>
<td>4.3D</td>
</tr>
<tr>
<td>4.2B Nominal Unit Shear Capacities for Wood-Frame Diaphragms (Blocked Wood Structural Panel Diaphragms Utilizing Multiple Rows of Fasteners (High Load Diaphragms)) .. 19</td>
<td>4.4.1</td>
</tr>
<tr>
<td>4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms (Unblocked Wood Structural Panel Diaphragms) .. 20</td>
<td>4.4.2</td>
</tr>
<tr>
<td>4.2D Nominal Unit Shear Capacities for Wood-Frame Diaphragms (Lumber Diaphragms) .. 21</td>
<td>A1</td>
</tr>
<tr>
<td>4.3.3.2 Unblocked Shear Wall Adjustment Factor, Cw 23</td>
<td>A2</td>
</tr>
<tr>
<td>4.3.3.5 Shear Capacity Adjustment Factor, Co .. 24</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

4A Open Front Structure .. 14
4B Cantilevered Building ... 15
4C High Load Diaphragm .. 17
4D Typical Shear Wall Height-to-Width Ratio for Perforated Shear Walls .. 25
4E Typical Individual Full-Height Wall Segments Height-to-Width Ratio .. 26
4F Typical Shear Wall Height-to-Width Ratio for Shear Walls Designed for Force Transfer Around Openings .. 26
4G Panel Attachment ... 36
4H Panel Splice Occurring over Horizontal Framing Member .. 37
4I Panel Splice Occurring across Studs 37
4J Sheathing Splice Plate (Alternate Detail) 38

LIST OF COMMENTARY TABLES

C3.2A Wood Structural Panel Dry Design Bending Strength Capacities .. 50
C3.2B Wood Structural Panel Dry Shear Capacities in the Plane .. 50
C3.2C Cellulosic Fiberboard Sheathing Design Bending Strength Capacities .. 50
C4.2.2A Shear Stiffness, G_{v_y} (lb/in. of depth), for Wood Structural Panels .. 55
C4.2.2B Shear Stiffness, G_{v_y} (lb/in. of depth), for Other Sheathing Materials 55
C4.2.2C Relationship Between Span Rating and Nominal Thickness .. 57
C4.2.2D Fastener Slip, e_y (in.) .. 57
C4.2.2E Data Summary for Blocked and Unblocked Wood Structural Panel Diaphragms 58
C4.2.2F Data Summary for Horizontal Lumber and Diagonal Lumber Sheathed Diaphragms 58
C4.3.2A Data Summary for Structural Fiberboard, Gypsum Wallboard, and Lumber Sheathed Shear Walls .. 66

LIST OF COMMENTARY FIGURES

C4.2.2-3a Diaphragm Dimensions and Shear and Moment Diagram .. 59
C4.2.2-3b Diaphragm Chord, Double Top Plate with Two Joints in Upper Plate 59
C4.2.7.1.1 Diaphragm Cases 1 through 6 63
C4.2.7.1.1(3) Staggering of Nails at Panel Edges of Blocked Diaphragms 63
C4.3.2 Comparison of 4-Term and 3-Term Deflection Equations .. 65
C4.3.3 Detail for Adjoining Panel Edges where Structural Panels are Applied to Both Faces of the Wall 69
C4.3.6.4.3 Distance for Plate Washer Edge to Sheathed Edge .. 71
C4.4.1.7(1) Panel Splice Over Common Horizontal Framing Member .. 74
C4.4.1.7(2) Detail for Continuous Panel Between Levels (Load Path for Shear Transfer Into and Out of the Diaphragm Not Shown) .. 75