ICC 600-2014
Standard for Residential Construction in High-Wind Regions

American National Standard
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus and other criteria for approval have been met by the standards developer.

Consensus is established when in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he or she has approved the standards or not, from manufacturing, marketing, purchasing or using products, processes or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at anytime. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
FOREWORD

[The information contained in this foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI’s requirements for an ANS. This foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to this standard.]

Introduction

In 2002, upon direction from the International Code Council (ICC) Board of Directors, the ICC Standards Council appointed a consensus committee to write a standard for the design and construction of residential buildings in high-wind regions. The scope of the standard was to specify prescriptive methods to provide wind-resistant designs and construction details for residential buildings constructed in high-wind regions.

Development

This is the second edition of ICC 600, Standard for Residential Construction in High-Wind Regions. This standard was developed by the ICC Consensus Committee on Residential High-Wind Construction (IS-RHW) that operates under ANSI Approved ICC Consensus Procedures for the Development of ICC Standards. The consensus process of ICC for promulgating standards is accredited by ANSI. The IS-RHW Committee is a balanced committee formed and operated in accordance with ICC rules and procedures.

The meetings of the IS-RHW Committee were open to the public, and interested individuals and organizations from across the country participated. The technical content of currently published documents on residential construction in high-wind regions, including hurricane-prone regions, was reviewed and considered by the committee. The information from these documents helped form a basis for the regulations provided in ICC 600, but the exact provisions adopted by the committee were determined based on the scope and intent of ICC 600. The requirements of ICC 600 are based on the intent to establish provisions consistent with the scope of the ICC family of codes and standards that are written to adequately protect public health, safety and welfare; provisions that do not necessarily increase construction costs; provisions that do not restrict the use of new materials, products or methods of construction; and provisions that do not give preferential treatment to particular types or classes of materials, products or methods of construction.

Adoption

ICC 600, Standard for Residential Construction in High-Wind Regions, is available for adoption and use by any jurisdiction. Its use within a governmental jurisdiction is intended to be accomplished through adoption by reference in accordance with proceedings establishing the jurisdiction’s laws.

Interpretations

Requests for interpretations on the provisions of ICC 600-2014 should be addressed to: International Code Council, Central Regional Office, 4051 Flossmoor Road, Country Club Hills, IL 60478.

Maintenance – Submittal of Proposals

All ICC standards are revised as required by ANSI. Proposals for revising this edition are welcome. Please visit the ICC website at www.iccsafe.org for the official “Call for Proposals” announcement. A proposal form and instructions can also be downloaded from www.iccsafe.org.

ICC, its members and those participating in the development of ICC 600-2014 do not accept any liability resulting from compliance or noncompliance with the provisions of ICC 600-2014. ICC does not have the power or authority to police or enforce compliance with the contents of this standard. Only the governmental body that enacts this standard into law has such authority.
FOREWORD

International Code Council Consensus Committee on Residential High-Wind Construction (IS-RHW)

Consensus Committee Scope: The Consensus Committee (CC) on Residential High-Wind Construction (IS-RHW) shall have primary responsibility for minimum requirements to safeguard the public health, safety and general welfare through requirements for building and other structures sited in high-wind regions.

This standard was processed and approved for submittal to ANSI by the ICC Consensus Committee on Residential High-Wind Construction (IS-RHW). Committee approval of the standard does not necessarily imply that all committee members voted for its approval.

Representatives on the Consensus Committee are classified in one of three voting interest categories. The committee has been formed to achieve consensus as required by ANSI Essential Requirements. At the time it approved this standard, the IS-RHW Consensus Committee consisted of the following members:

General Interest (G) • User Interest (U) • Producer Interest (P)

Jay Dilworth, MCP (G), Cape May, NJ
Gary J. Ehrlich, P.E. (P), National Association of Home Builders, Washington, DC
Brian F. Foley, P.E. (G), Fairfax County Virginia, Fairfax, VA
Dennis W. Graber P.E. (P), National Concrete Masonry Association, Herndon, VA
Eric Haefli A.I.A. (U), State Farm Insurance, Bloomington, IL
Kevin Harris, FAIA (U), Kevin Harris, Architect, LLC, Baton Rouge, LA
Marcelino Iglesias (G), State of New Jersey, Trenton, NJ
Brian Juedes, P.E., SE (U), Felton Group, Phoenix, AZ
Jay Larson P.E. (Alternate P), American Iron & Steel Institute, Bethlehem, PA
Mo Madani CBO-ENG (G), Florida Department of Community Affairs, Tallahassee, FL
T. Eric Stafford, P.E. (U), Institute for Business and Home Safety, Birmingham, AL
Stephen S. Szoke, P.E. (P), Portland Cement Association, Skokie, IL
Michael Walker, R.A., AIA (U), Halliwell Engineering Associates Inc., East Providence, RI
George J. Wiggins AA, BS MPA, CBO (G), City of Winter Park, Winter Park, FL
Robert J. Willis, P.E. (P), American Iron & Steel Institute, Washington, DC

Committee Secretary, Larry Franks, P.E., C.B.O., Senior Staff Engineer, Codes and Standards, International Code Council, Birmingham, AL

Voting Membership in Each Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (G)</td>
<td>5</td>
</tr>
<tr>
<td>User (U)</td>
<td>5</td>
</tr>
<tr>
<td>Producer (P)</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
</tr>
</tbody>
</table>

Interest Categories

General Interest: Individuals assigned to the General Interest category are those who represent the interests of an entity, including an association of such entities, representing the general public, or entities that promulgate or enforce the provisions within the committee scope. These entities include consumers and government regulatory agencies.

User Interest: Individuals assigned to the User Interest category are those who represent the interests of an entity, including an association of such entities, which is subject to the provisions or that voluntarily utilizes provisions within the committee scope. These entities include academia, applied research laboratory, building owner, design professional, government non-regulatory agency, insurance company, private inspection agency and product certification/evaluation agency.
Producer Interest: Individuals assigned to the Producer Interest category are those who represent the interests of an entity, including an association of such entities, which produces, installs or maintains a product, assembly or system subject to the provisions within the committee scope. These entities include builder, contractor, distributor, laborer, manufacturer, material association, standards promulgator, testing laboratory and utility.

NOTE — Multiple Interests: Individuals representing entities in more than one of the above interest categories, one of which is a Producer Interest, are assigned to Producer Interest. Individuals representing entities in the General Interest and User Interest categories are assigned to the User Interest.
PREFACE

Most regions in the United States face windstorm threats. Hurricanes strike the Gulf and Atlantic coastal states one or more times per year, with a single storm capable of causing billions of dollars in damage. The 2005 Atlantic hurricane season produced a record-breaking 27 named tropical storms including a record 15 hurricanes. Of these, a record four reached Category 5 strength, the highest categorization for hurricanes on the Saffir-Simpson Hurricane Scale. Five of the 15 were major landfall hurricanes causing damage in Cuba, Mexico and the US states of Florida, Alabama, Mississippi, Louisiana and Texas. Currently, the average wind damage to constructed facilities exceeds $3 billion yearly and is rising with accelerated coastal development and the migration of people to hurricane-prone coastlines. In 2004 and 2005 wind-related damage exceeded $20 billion each year. Much of this damage can be attributed to the inadequate resistance of nonengineered buildings to high winds.

If property damage is to be mitigated in the high-wind regions of this country, increased engineering attention must be given to residential construction. During the 1990s and first half of the 2000s, material associations including wood, masonry and steel, together with academics, product producers, engineers and code officials, were engaged in developing guidelines and standards that applied engineering knowledge and analysis to housing.

The International Code Council legacy standard SSTD 10-99 and its predecessors were the first US standards for high-wind construction of residential structures. The ICC SSTD 10 document was based on the Standard Building Code wind loads and used fastest-mile wind speeds. The SSTD 10 standard was well received by builders and building officials in many parts of the country.

In 2001, both wood and steel associations published construction manuals and standards, respectively, that dealt with high-wind design with their materials. These were based on the ASCE 7 Wind Loads that are now the basis for defining wind loads in the International Building Code (IBC) and the International Residential Code (IRC).

This standard provides a set of specifications that is consistent with the International Building Code and ASCE 7 wind loads, wind speed maps and conventions. See Appendix A for design load assumptions.

The primary focus of the update effort has been to provide a contemporary set of prescriptive requirements that supplement the International Residential Code provisions. The prescriptive requirements contained herein are based on the latest engineering knowledge and are intended to provide minimum requirements to improve structural integrity and improve building envelope performance within the limitations in building geometry, materials and wind climate specified, improving building resiliency.

Currently recognized within the IBC and IRC family of codes, the AWC Wood Frame Construction Manual (WFCM) and the AISI Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings (ANSI/AISI S230) are consensus documents that provide design guidance for wood frame and cold-formed steel-framed buildings, respectively. These documents are adopted by reference in Chapter 5 for design of light-framed construction of wood or cold-formed steel.

The committee responsible for developing this standard recognized that a large number of alternatives were available to a designer or builder for providing wind resistance. The provisions given are not intended to prevent the use of alternative materials or methods permitted by Section 104.11 of the 2015 International Building Code and International Residential Code. Neither the ICC nor any of the reviewers make any representation or warranty of any kind, whether expressed or implied, concerning the accuracy, completeness and utility of any information provided in this publication and assumes no liability for use of the information. This information should not be used without obtaining competent advice concerning its suitability for the application under consideration. Anyone using this information assumes all liability arising from its use.
TABLE OF CONTENTS

CHAPTER 1 ADMINISTRATION AND APPLICATION 1

Section
101 General ... 1
102 Applicability .. 1

CHAPTER 2 DEFINITIONS... 5

Section
201 General ... 5
202 Definitions .. 5

CHAPTER 3 STRUCTURAL DESIGN 7

Section
301 Design Criteria ... 7
302 Nonrectangular Buildings 8
303 Storm Shelters .. 8

CHAPTER 4 BUILDINGS WITH CONCRETE OR MASONRY EXTERIOR WALLS .. 13

Section
401 Scope ... 13
402 General ... 13
403 Footings and Foundations 15
404 Floor Systems ... 18
405 Masonry Wall Systems .. 21
406 Attic Floor or Ceiling Systems 59
407 Roof Systems ... 59
408 Open Structures .. 64
409 Above-Grade Concrete Wall Systems 66

CHAPTER 5 BUILDINGS WITH WOOD OR COLD-FORMED STEEL LIGHT-FRAMED EXTERIOR WALLS 103

Section
501 Scope ... 103
502 General ... 103
503 Light-Framed Construction 103
504 Fasteners and Connectors 103
505 Footings and Foundations 104
506 Slab-on-Grade Floor Systems 115
507 Special Provisions for Wood Structural Panels Used to Resist Both Shear and Uplift 116

CHAPTER 6 COMBINED EXTERIOR WALL CONSTRUCTION 121

Section
601 Scope ... 121
602 Concrete, Masonry or ICF First Story; Wood Frame Second Story .. 121
603 Wood Frame Gable Endwalls Above Concrete, Masonry or ICF Walls 121
604 Cold-formed Steel Framing Above Concrete, Masonry or ICF Walls 121

CHAPTER 7 ROOF ASSEMBLIES 125

Section
701 General ... 125
702 Weather Protection .. 127
703 Materials ... 128
704 Requirements for Roof Coverings 128

CHAPTER 8 FENESTRATION 141

Section
801 Scope ... 141
802 Windows, Unit Skylights, Garage Doors, Sliding Glass Doors, Glass Patio Doors and Entry Doors Installed in Wall/Roof Systems 141
803 Windborne Debris .. 143

CHAPTER 9 EXTERIOR WALL COVERING 145

Section
901 General ... 145
902 Wood, Hardboard and Wood Structural Panel Siding/Sheathing 147
903 Stucco ... 147
904 Masonry Veneer ... 153
905 Aluminum and Vinyl Siding 153
906 Exterior Insulation Finish Systems 155
907 Fiber Cement Siding .. 155
908 Metal Veneers ... 155
909 Drained Assembly Wall Over Mass Assembly Wall .. 155
910 Foam Plastic Insulating Sheathing 155
TABLE OF CONTENTS

CHAPTER 10 REFERENCED STANDARDS 157

APPENDIX A DESIGN LOAD ASSUMPTIONS 163

APPENDIX B FLOOD-RESISTANT FOUNDATIONS FOR RESIDENTIAL BUILDINGS WITH WOOD OR COLD-FORMED STEEL LIGHT-FRAMED WALLS 165

APPENDIX C ICC 600 DESIGN CHECKLIST 171

APPENDIX D DIMENSIONS OF NAILS DESCRIBED BY PENNYWEIGHT SYSTEM 201