By Statute, the Commissioner of Insurance has general supervision of the administration and enforcement of the North Carolina State Building Code and the Engineering Division serves as the Staff for the Building Code Council. Officials of the Department of Insurance are:

MIKE CAUSEY
Commissioner

BRIAN TAYLOR
Senior Deputy Commissioner

BARRY GUPTON, PE
Chief Code Consultant

CLIFF ISAAC, PE
Deputy Commissioner

DAN DITTMAN, PE
Mechanical Code Consultant

COMMITTEES OF THE COUNCIL
DECEMBER 12, 2017

ADMINISTRATION
Robbie Davis — Chair
Daniel Priest, RA — Vice Chair
Ralph Euchner
Wayne Hamilton
Steve Knight, PE
Keith Rogers, PE
Leon Skinner
David Smith
Wade White, PE

ENERGY
Ralph Euchner — Chair
Charles Conner, RA
Steve Knight, PE
Frankie Meads
Bridget Herring
Tony Sears
David Smith
Eric Tjalma, RA

MECHANICAL
Keith Rogers, PE — Chair
Ralph Euchner
Keith Hamilton
Bridget Herring
Robert Morrow
David Smith
Eric Tjalma, RA
Wade White, PE

BUILDING
Daniel Priest, RA — Chair
Charles Conner, RA
Wayne Hamilton
Steve Knight, PE
Tony Sears
Leon Skinner
Eric Tjalma, RA

EXISTING BUILDING
Leon Skinner — Chair
Keith Hamilton
Wayne Hamilton
Steve Knight, PE
Robert Morrow
Daniel Priest, RA
Wade White, PE

RESIDENTIAL
David Smith — Chair
Charles Conner, RA
Ralph Euchner
Keith Hamilton
Steve Knight, PE
Frankie Meads
Robert Morrow
Leon Skinner

ELECTRICAL
Wade White, PE — Chair
Ralph Euchner
Bridget Herring
Robert Morrow
Daniel Priest, RA
Keith Rogers, PE

FIRE PREVENTION
Wayne Hamilton — Chair
Charles Conner, RA
Ralph Euchner
Daniel Priest, RA
Leon Skinner
Wade White, PE

STRUCTURAL
Steve Knight, PE — Chair
Frankie Meads
Daniel Priest, RA
Keith Rogers, PE
Tony Sears
Leon Skinner
Eric Tjalma, RA
ACKNOWLEDGEMENTS
North Carolina Building Code Council
Mechanical Ad-Hoc Committee

CHAIR
Keith Rogers, PE
Bass, Nixon and Kennedy
6310 Chapel Hill Road, Ste. 250
Raleigh, NC 27612

Al Bass, Jr., PE
Bass, Nixon and Kennedy
6425 Chapman Court
Raleigh, NC 27612

Dan Dittman, PE
NC Department of Insurance
Albemarle Building
Raleigh, NC 72603

Dick Flowers
City of Raleigh
One Exchange Plaza
Raleigh, NC 27601

Lee Littiken
Cooper Mechanical Contractors
3041 Beechtree Drive
Sanford, NC 27330

Paula Strickland
Williams PH & AC
1051 Greecade Street
Greensboro, NC 27408
PREFACE

Introduction

Internationally, code officials recognize the need for a modern, up-to-date mechanical code addressing the design and installation of mechanical systems through requirements emphasizing performance. The *International Mechanical Code*®, in this 2015 edition, is designed to meet these needs through model code regulations that safeguard the public health and safety in all communities, large and small.

The *International Mechanical Code* provisions provide many benefits, among which is the model code development process that offers an international forum for mechanical professionals to discuss performance and prescriptive code requirements. This forum provides an excellent arena to debate proposed revisions. This model code also encourages international consistency in the application of provisions.

Development

The first edition of the *International Mechanical Code* (1996) was the culmination of an effort initiated in 1994 by a development committee appointed by the ICC and consisting of representatives of the three statutory members of the International Code Council at that time, including: Building Officials and Code Administrators International, Inc. (BOCA), International Conference of Building Officials (ICBO) and Southern Building Code Congress International (SBCCCI). The intent was to draft a comprehensive set of regulations for mechanical systems consistent with and inclusive of the scope of the existing model codes. Technical content of the latest model codes promulgated by BOCA, ICBO and SBCCCI was utilized as the basis for the development. This 2015 edition presents the code as originally issued, with changes approved through the ICC Code Development Process through 2013. A new edition such as this is promulgated every 3 years.

This code is founded on principles intended to establish provisions consistent with the scope of a mechanical code that adequately protects public health, safety and welfare; provisions that do not unnecessarily increase construction costs; provisions that do not restrict the use of new materials, products or methods of construction; and provisions that do not give preferential treatment to particular types or classes of materials, products or methods of construction.

Adoption

The International Code Council maintains a copyright in all of its codes and standards. Maintaining copyright allows ICC to fund its mission through sales of books, in both print and electronic formats. The *International Mechanical Code* is designed for adoption and use by jurisdictions that recognize and acknowledge the ICC’s copyright in the code, and further acknowledge the substantial shared value of the public/private partnership for code development between jurisdictions and the ICC.

The ICC also recognizes the need for jurisdictions to make laws available to the public. All ICC codes and ICC standards, along with the laws of many jurisdictions, are available for free in a non-downloadable form on the ICC’s website. Jurisdictions should contact the ICC at adoptions@icc SAFE.org to learn how to adopt and distribute laws based on the *International Mechanical Code* in a manner that provides necessary access, while maintaining the ICC’s copyright.
Maintenance

The *International Mechanical Code* is kept up to date through the review of proposed changes submitted by code enforcing officials, industry representatives, design professionals and other interested parties. Proposed changes are carefully considered through an open code development process in which all interested and affected parties may participate.

The contents of this work are subject to change through both the code development cycles and the governmental body that enacts the code into law. For more information regarding the code development process, contact the Codes and Standards Development Department of the International Code Council.

While the development procedure of the *International Mechanical Code* ensures the highest degree of care, the ICC, its members and those participating in the development of this code do not accept any liability resulting from compliance or noncompliance with the provisions because the ICC does not have the power or authority to police or enforce compliance with the contents of this code. Only the governmental body that enacts the code into law has such authority.

Code Development Committee Responsibilities

(Letter Designations in Front of Section Numbers)

In each code development cycle, proposed changes to this code are considered at the Committee Action Hearing by the International Mechanical Code Development Committee, whose action constitutes a recommendation to the voting membership for final action on the proposed change. Proposed changes to a code section that has a number beginning with a letter in brackets are considered by a different code development committee. For example, proposed changes to code sections that have [BG] in front of them (e.g., [BG] 309.1) are considered by the IBC — General Code Development Committee at the Committee Action Hearing.

The content of sections in this code that begin with a letter designation is maintained by another code development committee in accordance with the following:

[A] = Administrative Code Development Committee;

[BF] = IBC — Fire Safety Code Development Committee;

[BS] = IBC — Structural Code Development Committee;

[BG] = IBC — General Code Development Committee;

[E] = International Energy Conservation Code Development Committee;

[F] = International Fire Code Development Committee; and

Marginal and Text Markings

Solid vertical lines in the margins within the body of the code indicate a technical change from the requirements of the 2012 edition. Deletion indicators in the form of an arrow (↩) are provided in the margin where an entire section, paragraph, exception or table has been deleted or an item in a list of items or a table has been deleted. Underlining within the body of the code indicate a technical change to the 2018 North Carolina Mechanical Code from the requirements of the 2015 edition of the International Mechanical Code.

A single asterisk [*] placed in the margin indicates that text or a table has been relocated within the code. A double asterisk [**] placed in the margin indicates that the text or table immediately following it has been relocated there from elsewhere in the code. The following table indicates such relocations in the 2015 edition of the International Mechanical Code.

<table>
<thead>
<tr>
<th>2015 LOCATION</th>
<th>2012 LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Italicized Terms

Selected terms set forth in Chapter 2, Definitions, are italicized where they appear in code text. Such terms are not italicized where the definition set forth in Chapter 2 does not impart the intended meaning in the use of the term. The terms selected have definitions that the user should read carefully to facilitate better understanding of the code.
The *International Mechanical Code*

The *International Mechanical Code*® (IMC®) is a model code that regulates the design and installation of mechanical systems, appliances, appliance venting, duct and ventilation systems, combustion air provisions, hydronic systems and solar systems. The purpose of the code is to establish the minimum acceptable level of safety and to protect life and property from the potential dangers associated with the installation and operation of mechanical systems. The code also protects the personnel that install, maintain, service and replace the systems and appliances addressed by this code.

The IMC is primarily a prescriptive code with some performance text. The code relies heavily on product specifications and listings to provide much of the appliance and equipment installation requirements. The general Section 105.2 and the exception to Section 403.2 allow designs and installations to be performed by approved engineering methods as alternatives to the prescriptive methods in the code.

The format of the IMC allows each chapter to be devoted to a particular subject with the exception of Chapter 3, which contains general subject matters that are not extensive enough to warrant their own independent chapter.

Chapter 1 Scope and Administration. Chapter 1 establishes the limits of applicability of the code and describes how the code is to be applied and enforced. A mechanical code, like any other code, is intended to be adopted as a legally enforceable document and it cannot be effective without adequate provisions for its administration and enforcement. The provisions of Chapter 1 establish the authority and duties of the code official appointed by the jurisdiction having authority and also establish the rights and privileges of the design professional, contractor and property owner.

Chapter 2 Definitions. Chapter 2 is the repository of the definitions of terms used in the body of the code. Codes are technical documents and every word and term can impact the meaning of the code text and the intended results. The code often uses terms that have a unique meaning in the code and the code meaning can differ substantially from the ordinarily understood meaning of the term as used outside of the code.

The terms defined in Chapter 2 are deemed to be of prime importance in establishing the meaning and intent of the code text that uses the terms. The user of the code should be familiar with and consult this chapter because the definitions are essential to the correct interpretation of the code and because the user may not be aware that a term is defined.

Chapter 3 General Regulations. Chapter 3 contains broadly applicable requirements related to appliance location and installation, appliance and systems access, protection of structural elements, condensate disposal and clearances to combustibles, among others.

Chapter 4 Ventilation. Chapter 4 includes means for protecting building occupant health by controlling the quality of indoor air and protecting property from the effects of inadequate ventilation. In some cases, ventilation is required to prevent or reduce a health hazard by removing contaminants at their source.

Ventilation is both necessary and desirable for the control of air contaminants, moisture and temperature. Habitable and occupiable spaces are ventilated to promote a healthy and comfortable environment for the occupants. Uninhabited and unoccupied spaces are ventilated to protect the building structure from the harmful effects of excessive humidity and heat. Ventilation of specific occupancies is necessary to minimize the potential for toxic or otherwise harmful substances to reach dangerously high concentrations in air.
Chapter 5 Exhaust Systems. Chapter 5 provides guidelines for reasonable protection of life, property and health from the hazards associated with exhaust systems, air contaminants and smoke development in the event of a fire. In most cases, these hazards involve materials and gases that are flammable, explosive, toxic or otherwise hazardous. Where contaminants are known to be present in quantities that are irritating or harmful to the occupants’ health or are hazardous in a fire, both naturally and mechanically ventilated spaces must be equipped with mechanical exhaust systems capable of collecting and removing the contaminants.

This chapter contains requirements for the installation of exhaust systems, with an emphasis on the structural integrity of the systems and equipment involved and the overall impact of the systems on the fire safety performance of the building. It includes requirements for the exhaust of commercial kitchen grease- and smoke-laden air, hazardous fumes and toxic gases, clothes dryer moisture and heat and dust, stock and refuse materials.

Chapter 6 Duct Systems. Chapter 6 of the code regulates the materials and methods used for constructing and installing ducts, plenums, system controls, exhaust systems, fire protection systems and related components that affect the overall performance of a building’s air distribution system and the reasonable protection of life and property from the hazards associated with air-moving equipment and systems. This chapter contains requirements for the installation of supply, return and exhaust air systems. Specific exhaust systems are also addressed in Chapter 5. Information on the design of duct systems is limited to that in Section 603.2. The code is very much concerned with the structural integrity of the systems and the overall impact of the systems on the fire safety and life safety performance of the building. Design considerations such as duct sizing, maximum efficiency, cost effectiveness, occupant comfort and convenience are the responsibility of the design professional. The provisions for the protection of duct penetrations of wall, floor, ceiling and roof assemblies are extracted from the International Building Code.

Chapter 7 Combustion Air. Complete combustion of solid and liquid fuel is essential for the proper operation of appliances, for control of harmful emissions and for achieving maximum fuel efficiency.

The specific combustion air requirements provided in previous editions of the code have been deleted in favor of a single section that directs the user to NFPA 31 for oil-fired appliance combustion air requirements and the manufacturer’s installation instructions for solid-fuel burning appliances. For gas-fired appliances, the provisions of the International Fuel Gas Code are applicable.

Chapter 8 Chimneys and Vents. Chapter 8 is intended to regulate the design, construction, installation, maintenance, repair and approval of chimneys, vents and their connections to solid and liquid fuel-burning appliances. The requirements of this chapter are intended to achieve the complete removal of the products of combustion from fuel-burning appliances and equipment. This chapter includes regulations for the proper selection, design, construction and installation of a chimney or vent, along with appropriate measures to minimize the related potential fire hazards. A chimney or vent must be designed for the type of appliance or equipment it serves. Chimneys and vents are designed for specific applications depending on the flue gas temperatures and the type of fuel being burned in the appliance. Chimneys and vents for gas-fired appliances are covered in the International Fuel Gas Code.

Chapter 9 Specific Appliances, Fireplaces and Solid Fuel-burning Equipment. Chapter 9 sets minimum construction and performance criteria for fireplaces, appliances and equipment and provides for the safe installation of these items. It reflects the code’s intent to specifically address all of the types of appliances that the code intends to regulate. Other regulations affecting the installation of solid fuel-burning fireplaces, appliances and accessory appliances are found in Chapters 3, 6, 7, 8, 10, 11, 12, 13 and 14.
Chapter 10 Boilers, Water Heaters and Pressure Vessels. Chapter 10 presents regulations for the proper installation of boilers, water heaters and pressure vessels to protect life and property from the hazards associated with those appliances and vessels. It applies to all types of boilers and pressure vessels, regardless of size, heat input, operating pressure or operating temperature.

Because pressure vessels are closed containers designed to contain liquids, gases or both under pressure, they must be designed and installed to prevent structural failures that can result in extremely hazardous situations. Certain safety features are therefore provided in Chapter 10 to reduce the potential for explosion hazards.

Chapter 11 Refrigeration. Chapter 11 contains regulations pertaining to the life safety of building occupants. These regulations establish minimum requirements to achieve the proper design, construction, installation and operation of refrigeration systems. Refrigeration systems are a combination of interconnected components and piping assembled to form a closed circuit in which a refrigerant is circulated. The system’s function is to extract heat from a location or medium, and to reject that heat to a different location or medium. This chapter establishes reasonable safeguards for the occupants by defining and mandating practices that are consistent with the practices and experience of the industry.

Chapter 12 Hydronic Piping. Hydronic piping includes piping, fittings and valves used in building space conditioning systems. Applications include hot water, chilled water, steam, steam condensate, brines and water/antifreeze mixtures. Chapter 12 contains the provisions that govern the construction, installation, alteration and repair of all hydronic piping systems that affect reliability, serviceability, energy efficiency and safety.

Chapter 13 Fuel Oil Piping and Storage. Chapter 13 regulates the design and installation of fuel oil storage and piping systems. The regulations include reference to construction standards for above-ground and underground storage tanks, material standards for piping systems (both above-ground and underground) and extensive requirements for the proper assembly of system piping and components. The International Fire Code (IFC) covers subjects not addressed in detail here. The provisions in this chapter are intended to prevent fires, leaks and spills involving fuel oil storage and piping systems.

Chapter 14 Solar Systems. Chapter 14 establishes provisions for the safe installation, operation and repair of solar energy systems used for space heating or cooling, domestic hot water heating or processing. Although such systems use components similar to those of conventional mechanical equipment, many of these provisions are unique to solar energy systems.

Chapter 15 Referenced Standards. Chapter 15 lists all of the product and installation standards and codes that are referenced throughout Chapters 1 through 14. As stated in Section 102.8, these standards and codes become an enforceable part of the code (to the prescribed extent of the reference) as if printed in the body of the code. Chapter 15 provides the full title and edition year of the standards and codes in addition to the address of the promulgators and the section numbers in which the standards and codes are referenced.

Appendix A Chimney Connector Pass-throughs. Appendix A provides figures that illustrate various requirements in the body of the code. Figure A-1 illustrates the chimney connector clearance requirements of Table 803.10.4.

Appendix B Recommended Permit Fee Schedule. (Deleted).
LEGISLATION

Deleted. See the North Carolina Administrative Code and Policies.
TABLE OF CONTENTS

CHAPTER 1 SCOPE AND ADMINISTRATION ... 1

PART 1—SCOPE AND APPLICATION 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>General</td>
</tr>
<tr>
<td>102</td>
<td>Applicability</td>
</tr>
</tbody>
</table>

PART 2—ADMINISTRATION AND ENFORCEMENT 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>Department of Mechanical Inspection (Deleted) See the North Carolina Administrative Code and Policies</td>
</tr>
<tr>
<td>104</td>
<td>Duties and Powers of the Code Official (Deleted) See the North Carolina Administrative Code and Policies</td>
</tr>
<tr>
<td>105</td>
<td>Approval</td>
</tr>
<tr>
<td>106</td>
<td>Permits</td>
</tr>
<tr>
<td>107</td>
<td>Inspections and Testing (Deleted) See the North Carolina Administrative Code and Policies</td>
</tr>
<tr>
<td>108</td>
<td>Violations (Deleted) See the North Carolina Administrative Code and Policies</td>
</tr>
<tr>
<td>109</td>
<td>Means of Appeal (Deleted) See the North Carolina Administrative Code and Policies</td>
</tr>
<tr>
<td>110</td>
<td>Temporary Equipment, Systems and Uses</td>
</tr>
</tbody>
</table>

CHAPTER 2 DEFINITIONS 5

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>General</td>
</tr>
<tr>
<td>202</td>
<td>General Definitions</td>
</tr>
</tbody>
</table>

CHAPTER 3 GENERAL REGULATIONS 17

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>General</td>
</tr>
<tr>
<td>302</td>
<td>Protection of Structure</td>
</tr>
<tr>
<td>303</td>
<td>Equipment and Appliance Location</td>
</tr>
<tr>
<td>304</td>
<td>Installation</td>
</tr>
<tr>
<td>305</td>
<td>Piping Support</td>
</tr>
<tr>
<td>306</td>
<td>Access and Service Space</td>
</tr>
<tr>
<td>307</td>
<td>Condensate Disposal</td>
</tr>
<tr>
<td>308</td>
<td>Clearance Reduction</td>
</tr>
<tr>
<td>309</td>
<td>Temperature Control</td>
</tr>
<tr>
<td>310</td>
<td>Explosion Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>Smoke and Heat Vents</td>
</tr>
<tr>
<td>312</td>
<td>Heating and Cooling Load Calculations</td>
</tr>
<tr>
<td>313</td>
<td>Carbon Monoxide Alarms</td>
</tr>
</tbody>
</table>

CHAPTER 4 VENTILATION 29

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>General</td>
</tr>
<tr>
<td>402</td>
<td>Natural Ventilation</td>
</tr>
<tr>
<td>403</td>
<td>Mechanical Ventilation</td>
</tr>
<tr>
<td>404</td>
<td>Enclosed Parking Garages</td>
</tr>
<tr>
<td>405</td>
<td>Systems Control</td>
</tr>
<tr>
<td>406</td>
<td>Ventilation of Uninhabited Spaces</td>
</tr>
<tr>
<td>407</td>
<td>Ambulatory Care Facilities and Group I-2 Occupancies</td>
</tr>
<tr>
<td>408</td>
<td>Indoor Firing Ranges</td>
</tr>
</tbody>
</table>

CHAPTER 5 EXHAUST SYSTEMS 39

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>General</td>
</tr>
<tr>
<td>502</td>
<td>Required Systems</td>
</tr>
<tr>
<td>503</td>
<td>Motors and Fans</td>
</tr>
<tr>
<td>504</td>
<td>Clothes Dryer Exhaust</td>
</tr>
<tr>
<td>505</td>
<td>Domestic Kitchen Exhaust Equipment</td>
</tr>
<tr>
<td>506</td>
<td>Commercial Kitchen Hood Ventilation System Ducts and Exhaust Equipment</td>
</tr>
<tr>
<td>507</td>
<td>Commercial Kitchen Hoods</td>
</tr>
<tr>
<td>508</td>
<td>Commercial Kitchen Makeup Air</td>
</tr>
<tr>
<td>509</td>
<td>Fire Suppression Systems</td>
</tr>
<tr>
<td>510</td>
<td>Hazardous Exhaust Systems</td>
</tr>
<tr>
<td>511</td>
<td>Dust, Stock and Refuse Conveying Systems</td>
</tr>
<tr>
<td>512</td>
<td>Subslab Soil Exhaust Systems</td>
</tr>
<tr>
<td>513</td>
<td>Smoke Control Systems</td>
</tr>
<tr>
<td>514</td>
<td>Energy Recovery Ventilation Systems</td>
</tr>
</tbody>
</table>

CHAPTER 6 DUCT SYSTEMS 67

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>General</td>
</tr>
<tr>
<td>602</td>
<td>Plenums</td>
</tr>
<tr>
<td>603</td>
<td>Duct Construction and Installation</td>
</tr>
<tr>
<td>604</td>
<td>Insulation</td>
</tr>
</tbody>
</table>

2018 NORTH CAROLINA MECHANICAL CODE xvii
CHAPTER 7 COMBUSTION AIR 81
Section
701 General 81

CHAPTER 8 CHIMNEYS AND VENTS 83
Section
801 General 83
802 Vents 84
803 Connectors 85
804 Direct-vent, Integral Vent and Mechanical Draft Systems 86
805 Factory-built Chimneys 87
806 Metal Chimneys 88

CHAPTER 9 SPECIFIC APPLIANCES, FIREPLACES AND SOLID FUEL-BURNING EQUIPMENT 89
Section
901 General 89
902 Masonry Fireplaces 89
903 Factory-built Fireplaces 89
904 Pellet Fuel-burning Appliances 89
905 Fireplace Stoves and Room Heaters 89
906 Factory-built Barbecue Appliances 89
907 Incinerators and Crematories 89
908 Cooling Towers, evaporative Condensers and Fluid Coolers 90
909 Vented Wall Furnaces 90
910 Floor Furnaces 90
911 Duct Furnaces 91
912 Infrared Radiant Heaters 91
913 Clothes Dryers 91
914 Sauna Heaters 91
915 Engine and Gas Turbine-powered Equipment and Appliances 91
916 Pool and Spa Heaters 91
917 Cooking Appliances 92
918 Forced-air Warm-air Furnaces 92
919 Conversion Burners 92
920 Unit Heaters 92
921 Vented Room Heaters 92
922 Kerosene and Oil-fired Stoves 92
923 Small Ceramic Kilns 92
924 Stationary Fuel Cell Power Systems 93
925 Masonry Heaters 93
926 Gaseous Hydrogen Systems 93
927 Radiant Heating Systems 93
928 Evaporative Cooling Equipment 93
929 Baseboard Convectors 93
930 Duct Heaters 93

CHAPTER 10 BOILERS, WATER HEATERS AND PRESSURE VESSELS 95
Section
1001 General 95
1002 Water Heaters 95
1003 Pressure Vessels 95
1004 Boilers 95
1005 Boiler Connections 96
1006 Safety and Pressure Relief Valves and Controls 96
1007 Boiler Low-water Cutoff 97
1008 Bottom Blowoff Valve 97
1009 Hot Water Boiler Expansion Tank 97
1010 Gauges 97
1011 Tests 98

CHAPTER 11 REFRIGERATION 99
Section
1101 General 99
1102 System Requirements 99
1103 Refrigeration System Classification 100
1104 System Application Requirements 105
1105 Machinery Room, General Requirements 106
1106 Machinery Room, Special Requirements 107
1107 Refrigerant Piping 108
1108 Field Test 109
1109 Periodic Testing 109

CHAPTER 12 HYDRONIC PIPING 111
Section
1201 General 111
1202 Material 111
1203 Joints and Connections 112
1204 Pipe Insulation 114
1205 Valves 114
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206</td>
<td>Piping Installation</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>1207</td>
<td>Transfer Fluid</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>1208</td>
<td>Tests</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>1209</td>
<td>Embedded Piping</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>1210</td>
<td>Plastic Pipe Ground-source Heat Pump Loop Systems</td>
<td></td>
<td>115</td>
</tr>
</tbody>
</table>

CHAPTER 13 FUEL OIL PIPING AND STORAGE 119

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1301</td>
<td>General</td>
<td>119</td>
</tr>
<tr>
<td>1302</td>
<td>Material</td>
<td>119</td>
</tr>
<tr>
<td>1303</td>
<td>Joints and Connections</td>
<td>119</td>
</tr>
<tr>
<td>1304</td>
<td>Piping Support</td>
<td>120</td>
</tr>
<tr>
<td>1305</td>
<td>Fuel Oil System Installation</td>
<td>120</td>
</tr>
<tr>
<td>1306</td>
<td>Oil Gauging</td>
<td>120</td>
</tr>
<tr>
<td>1307</td>
<td>Fuel Oil Valves</td>
<td>121</td>
</tr>
<tr>
<td>1308</td>
<td>Testing</td>
<td>121</td>
</tr>
<tr>
<td>1309</td>
<td>Oil Tanks for One- and Two-family Dwellings and Townhouses</td>
<td>121</td>
</tr>
</tbody>
</table>

CHAPTER 14 SOLAR SYSTEMS 123

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1401</td>
<td>General</td>
<td>123</td>
</tr>
<tr>
<td>1402</td>
<td>Installation</td>
<td>123</td>
</tr>
<tr>
<td>1403</td>
<td>Heat Transfer Fluids</td>
<td>124</td>
</tr>
<tr>
<td>1404</td>
<td>Materials</td>
<td>124</td>
</tr>
</tbody>
</table>

CHAPTER 15 REFERENCED STANDARDS 125

APPENDIX A CHIMNEY CONNECTOR PASS-THROUGHS 135

APPENDIX B RECOMMENDED PERMIT FEE SCHEDULE (Deleted) 137

INDEX 139