SIGNIFICANT CHANGES TO THE

FLORIDA BUILDING CODE, BUILDING

6TH EDITION (2017)
Contents

PART 1
Administration
Chapters 1 and 2

1

■ 101.2
Exempt Residential Accessory Structures 2

■ 111.1
Change of Use or Occupancy 4

■ 202
Definition of Horizontal Exit 6

■ 202
Definition of Platform 7

■ 202
Definition of Private Garage 8

■ 202
Definition of Treated Wood 9

PART 2
Building Planning
Chapters 3 through 6

11

■ 304.1
Food Processing Facilities and Commercial Kitchens 13

■ 304.1
Training and Skill Development Facilities 15

■ 306.2
Food Processing Facilities and Commercial Kitchens 17

■ 308.3
Group I-1 Occupancy Classification 19

■ 308.4
Group I-2 Occupancy Classification 21

■ 310.5
Group R-3 Lodging Houses 23

■ 310.6
Group R-4 Occupancy Classification 25

■ 311.1.1
Classification of Accessory Storage Spaces 27

■ 403.1, Exception Items 3 and 5
Applicability of High-Rise Provisions 28

■ 404.5, Exception
Atrium Smoke Control in Group I Occupancies 30

■ 404.9, 404.10
Egress Travel through an Atrium 31

■ 406.3.1
Private Garage Floor-Area Limitation 32

■ 406.3.2
Private Parking Garage Ceiling Height 34

■ 407.2.5
Group I-2 Shared Living Spaces 35

■ 407.2.6
Group I-2 Cooking Facilities 37

■ 407.5
Maximum Size of Group I-2 Smoke Compartments 40

■ 410.3.5
Horizontal Sliding Doors at Stage Proscenium Opening 42
CONTENTS

■ 412.7 Travel Distance in Aircraft Manufacturing Facilities 44
■ 503 General Building Height and Area Limitations 46
■ Tables 504.3, 504.4 Building Height and Number of Stories 48
■ 505.2.3, Exception 2 Mezzanine Openness 50
■ Table 506.2 Building Area 52
■ 507.1 Basements in Unlimited Area Buildings 54
■ 507.9 Group H-5 in Unlimited Area Buildings 55
■ Table 509 Fire Protection from Incidental Uses 57
■ 510.2 Horizontal Building Separation 61
■ Table 601, Footnote d One-Hour Substitution 64
■ 602.4 Type IV Member Size Equivalencies 66
■ 602.4.2 Cross-Laminated Timber in Exterior Walls 68
■ 603.1, Item 26 Wall Construction of Freezers and Coolers 69

PART 3
Fire Protection Chapters 7 through 9

■ 704.4 Protection of Secondary Members 73
■ 705.2 Projections at Exterior Walls 75
■ 705.2.3 Combustible Projections 78
■ 705.3 Buildings on the Same Lot 79
■ 705.6 Structural Element Bracing of Exterior Walls 82
■ 705.8.5 Vertical Separation of Openings 84
■ 706.2 Structural Stability of Fire Walls 86
■ 709.4 Continuity of Smoke Barriers 87
■ 711, 712 Horizontal Assemblies and Vertical Openings 89
■ 714.4.2 Membrane Penetrations 95
■ 717.1.1 Ducts Transitioning between Shafts 97
■ 717.3, 717.5 Corridor Dampers 99
■ 903.2.1.6 Sprinkler Systems—Assembly Occupancies 103
■ 903.2.1.7 Multiple Fire Areas 105
■ 903.2.8 Sprinkler Systems—Group R Occupancies 107
■ 903.3.1.1.2 Exempt Locations for NFPA 13 Sprinklers 109
■ 903.3.1.2.2 Open-Ended Corridors 111
■ 903.3.8 Limited Area Sprinkler Systems 113
■ 904.13 Domestic Cooking Systems in Group I-2 Condition 1 116
■ 907.2.3 Fire Alarms—Group E Occupancies 118
■ 907.2.9.3 Alarm Systems—Group R-2 College and University Buildings 120
■ 907.2.11.3, 907.2.11.4 Smoke Alarms near Cooking Appliances and Bathrooms 122
■ 909.21.1 Elevator Hoistway Pressurization 124
■ 910 Smoke and Heat Removal 128

PART 4
Means of Egress Chapter 10

■ Chapter 10 Means of Egress 136
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1004.1.1</td>
<td>Cumulative Occupant Loads</td>
<td>137</td>
</tr>
<tr>
<td>Table 1004.1.2</td>
<td>Occupant Load Factors</td>
<td>139</td>
</tr>
<tr>
<td>1006, 1007</td>
<td>Numbers of Exits and Exit Access Doorways</td>
<td>141</td>
</tr>
<tr>
<td>1007.1</td>
<td>Exit and Exit Access Doorway Configuration</td>
<td>146</td>
</tr>
<tr>
<td>1010.1.9</td>
<td>Door Operations—Locking Systems</td>
<td>148</td>
</tr>
<tr>
<td>1011.15, 1011.16</td>
<td>Ladders</td>
<td>152</td>
</tr>
<tr>
<td>1014.8</td>
<td>Handrail Projections</td>
<td>154</td>
</tr>
<tr>
<td>1016.2</td>
<td>Egress through Intervening Spaces</td>
<td>156</td>
</tr>
<tr>
<td>1017.2.2</td>
<td>Travel Distance Increase for Groups F-1 and S-1</td>
<td>158</td>
</tr>
<tr>
<td>1018.3</td>
<td>Aisles in Groups B and M</td>
<td>161</td>
</tr>
<tr>
<td>1020.2</td>
<td>Corridor Width and Capacity</td>
<td>163</td>
</tr>
<tr>
<td>1023.3.1</td>
<td>Stairway Extension</td>
<td>165</td>
</tr>
<tr>
<td>1029.13.2.2.1</td>
<td>Stepped Aisle Construction Tolerances</td>
<td>167</td>
</tr>
<tr>
<td>1603.1.8</td>
<td>Special Loads</td>
<td>182</td>
</tr>
<tr>
<td>1604.3</td>
<td>Serviceability</td>
<td>183</td>
</tr>
<tr>
<td>1604.5</td>
<td>Risk Category</td>
<td>186</td>
</tr>
<tr>
<td>1607.5</td>
<td>Partition Loads</td>
<td>189</td>
</tr>
<tr>
<td>1607.9</td>
<td>Impact Loads for Façade Access Equipment</td>
<td>190</td>
</tr>
<tr>
<td>1607.12</td>
<td>Roof Loads</td>
<td>192</td>
</tr>
<tr>
<td>1607.12.5</td>
<td>Photovoltaic Panel Systems</td>
<td>194</td>
</tr>
<tr>
<td>1609.1.1</td>
<td>Determination of Wind Loads</td>
<td>196</td>
</tr>
<tr>
<td>1609.1.2</td>
<td>Projection of Openings in Windborne Debris Regions</td>
<td>198</td>
</tr>
<tr>
<td>1708.3.2</td>
<td>Static Load Testing</td>
<td>202</td>
</tr>
<tr>
<td>1711</td>
<td>Material and Test Standards</td>
<td>204</td>
</tr>
<tr>
<td>1803.5</td>
<td>Investigated Conditions</td>
<td>207</td>
</tr>
<tr>
<td>1804.1</td>
<td>Excavation near Foundations</td>
<td>209</td>
</tr>
<tr>
<td>1808.3</td>
<td>Design Surcharge Loads</td>
<td>210</td>
</tr>
<tr>
<td>1810.2.5</td>
<td>Group Effects</td>
<td>211</td>
</tr>
<tr>
<td>1810.3</td>
<td>Design and Detailing</td>
<td>212</td>
</tr>
<tr>
<td>1901.3</td>
<td>Anchoring to Concrete</td>
<td>214</td>
</tr>
<tr>
<td>1901.4</td>
<td>Composite Structural Steel and Concrete Structures</td>
<td>217</td>
</tr>
<tr>
<td>1904</td>
<td>Durability Requirements</td>
<td>219</td>
</tr>
<tr>
<td>2101.2</td>
<td>Masonry Design Methods</td>
<td>221</td>
</tr>
</tbody>
</table>
CONTENTS

■ 2103 Masonry Construction Materials 223
■ 2104 Masonry Construction 227
■ 2105 Quality Assurance 229
■ 2210 Cold-Formed Steel 231
■ 2211 Cold-Formed Steel Light-Frame Construction 232
■ 2303.1.4 Structural Glued Cross-Laminated Timber 234
■ 2303.1.13 Engineered Wood Rim Board 236
■ 2304.6 Exterior Wall Sheathing 237
■ 2304.10.6 Load Path 239
■ 2304.12 Protection Against Decay and Termites 240
■ 2406.4.7 Safety Glazing Adjacent to Bottom Stair Landing 243
■ Chapter 25 Gypsum Panel Products 245
■ 2612 Plastic Composites 248

PART 7 Building Services, Special Devices, and Special Conditions Chapters 27 through 34 251
■ 2902.3 Public Toilet Facilities 252
■ 3004 Elevator Hoistway Venting 254
■ 3006 Elevator Lobbies 257
■ 3109 Structures Seaward of a Coastal Construction Control Line 261
The purpose of Significant Changes to the Florida Building Code, Building 6th Edition (2017) is to familiarize building officials, fire officials, plans examiners, inspectors, design professionals, contractors, and others in the construction industry with many of the important changes in the 6th Edition (2017) Florida Building Code, Building (FBCB). This publication is designed to assist those code users in identifying the specific code changes that have occurred and, more important, understanding the reasons behind the changes. It is also a valuable resource for jurisdictions when the new code goes into effect.

Only a portion of the total number of code changes to the FBCB are discussed in this book. The changes selected were identified for a number of reasons, including their frequency of application, special significance, or change in application. However, the importance of those changes not included is not to be diminished. Further information on all code changes can be found in the Complete Revision History, available from the International Code Council® (ICC®) and www.floridabuilding.org. The resource collection provides the published documentation for each successful code change contained in the base code (2015 International Building Code®) since the 2012 edition. All Florida-specific amendments to the base code can be found under the “Proposed Code Modifications” at www.floridabuilding.org.

This book is organized into seven general categories, each representing a distinct grouping of code topics. It is arranged to follow the general layout of the FBCB, including code sections and section number format. The table of contents, in addition to providing guidance in use of this publication, allows for quick identification of those significant code changes that occur in the 6th Edition (2017) Florida Building Code, Building.

Throughout the book, each change is accompanied by a photograph, an application example, or an illustration to assist and enhance the reader’s understanding of the specific change. A summary and a discussion of the significance of the changes are also provided. Each code change is identified by type, be it an addition, modification, clarification, or deletion.

The code change itself is presented in a format similar to the style utilized for code-change proposals. Deleted code language is shown with a strike-through, whereas new code text is indicated by underlining. As a
result, the actual 6th Edition (2017) code language is provided, as well as a comparison with the 5th Edition (2014) language, so the user can easily determine changes to the specific code text.

As with any code-change text, *Significant Changes to the Florida Building Code, Building 6th Edition (2017)* is best used as a study companion to the 6th Edition (2017) FBCB. Because only a limited discussion of each change is provided, the code itself should always be referenced in order to gain a more comprehensive understanding of the code change and its application.

The commentary and opinions set forth in this text are those of the authors and do not necessarily represent the official position of the ICC. In addition, they may not represent the views of any enforcing agency, as such agencies have the sole authority to render interpretations of the FBCB. In many cases, the explanatory material is derived from the reasoning expressed by the code-change proponent.

Comments concerning this publication are encouraged and may be directed to the ICC at significantchanges@iccSafe.org.

About the Florida Building Code

The *Florida Building Code* is based on national model building codes and national consensus standards, which are amended where necessary for Florida’s specific needs. It is applicable to private buildings in the State of Florida other than those specifically exempted by Section 553.73, Florida Statutes. It has been harmonized with the *Florida Fire Prevention Code*, which is developed and maintained by the Department of Financial Services, Office of the State Fire Marshal, to establish unified and consistent standards.

The code is composed of nine main volumes: the *Florida Building Code, Building*, which also includes state regulations for licensed facilities; the *Florida Building Code, Plumbing*; the *Florida Building Code, Mechanical*; the *Florida Building Code, Fuel Gas*; the *Florida Building Code, Existing Building*; the *Florida Building Code, Residential*; the *Florida Building Code, Energy Conservation*; the *Florida Building Code, Accessibility*; and the *Florida Building Code, Test Protocols for High-Velocity Hurricane Zones*. Chapter 27 of the *Florida Building Code, Building*, adopts the *National Electrical Code, NFPA 70*, by reference.
About the Authors

T. Eric Stafford, P. E.
President, T. Eric Stafford & Associates, LLC

T. Eric Stafford is a registered professional engineer specializing in wind hazard mitigation and code development activities. He is currently President of T. Eric Stafford & Associates and serves as a building code consultant for groups including the Institute for Business and Home Safety. Stafford partnered with ASCE Press to publish the *Significant Changes to the Wind Load Provisions of ASCE 7-10* and *Significant Changes to the Seismic Load Provisions of ASCE 7-10*. Stafford has also partnered with International Code Council, Building Officials Association of Florida, and AIA Florida to publish Commentaries on the Florida Building Codes and Commentaries on the North Carolina Building Codes. Previously, he served as Vice President/Technical Services for the Federal Alliance for Safe Homes. He has a Bachelor of Civil Engineering and a Master of Science (Structural emphasis) from Auburn University. Stafford is a member of the ASCE 7 Task Committee on Wind Loads, a previous member of the National Hurricane Conference Planning Committee, Chairman Emeritus of the National Hurricane Conference Engineering Topic Committee, a member of the ICC 600 Committee, former Staff Liaison to the SBCCI Wind Load Committee, and former Staff Liaison to the International Building Code Structural Code Development committee. Stafford is national lecturer on the wind provisions of the *International Building Code* and ASCE 7. Stafford also was Manager of Codes for the International Code Council and Director/Code Development for the Southern Building Code Congress. He was the recipient of the 2004 National Hurricane eConference Hurricane Mitigation Award.

Douglas W. Thornburg, AIA, CBO
International Code Council
Vice-President and Technical Director, Products and Services

Douglas W. Thornburg is currently Vice-President of Education and Certification for the International Code Council (ICC), where he provides administrative and technical leadership for the ICC education and certification programs. Prior to employment with ICC in 2004, he spent nine years as a code consultant and educator on building codes.

Formerly Vice-President/Education for the International Conference of Building Officials (ICBO), Doug also continues to develop and present building code seminars nationally and has developed numerous educational texts and resource materials. He was presented with ICC’s inaugural Educator of the Year Award in 2008, recognizing his outstanding contributions in education and training.

A graduate of Kansas State University and a registered architect, Doug has over 33 years of experience in building code training and administration. He has authored a variety of code-related support publications, including the *IBC Handbook* and *Significant Changes to the International Building Code*.
John R. Henry, P. E.

John R. Henry is the former Principal Staff Engineer with the International Code Council (ICC) Business and Product Development Department, where he was responsible for the research and development of technical resources pertaining to the structural engineering provisions of the International Building Code® (IBC). John also developed and presented technical seminars on the structural provisions of the IBC. He has a broad range of experience that includes structural design in private practice, plan-check engineering with consulting firms and building department jurisdictions, and 17 years as an International Conference of Building Officials (ICBO)/ICC Staff Engineer. John graduated with honors from California State University in Sacramento with a Bachelor of Science Degree in Civil Engineering and is a Registered Civil Engineer in the State of California. He is a member of the Structural Engineers Association of California (SEAOC) and is an ICC Certified Plans Examiner. John has written several articles on the structural provisions of the IBC that have appeared in Structure magazine and Structural Engineer magazine’s Code Series. He is also the coauthor of the 2012 IBC Handbook and coauthor with S. K. Ghosh, PhD, of the IBC Handbook—Structural Provisions.

Jay Woodward
International Code Council
Senior Staff Architect

Jay Woodward is a senior staff architect with the ICC’s Business and Product Development department. With more than 31 years of experience in building design, construction, code enforcement, and instruction, Jay’s experience provides him with the ability to address issues of code application and design for code enforcement personnel as well as architects, designers, and contractors. Jay has previously served as the Secretariat for the ICC A117.1 standard committee, ICC’s International Energy Conservation Code, and the International Building Code’s Fire Safety Code Development committee.

A graduate of the University of Kansas and a registered architect, Jay has also worked as an architect for the Leo A. Daly Company in Omaha, Nebraska; as a building plans examiner for the City of Wichita, Kansas; and as a senior staff architect for the International Conference of Building Officials (ICBO) prior to working for the ICC. He is also author of Significant Changes to the A117.1 Accessibility Standard 2009 Edition.
About the International Code Council®

The International Code Council is a member-focused association dedicated to helping the building safety community and construction industry provide safe, sustainable and affordable construction through the development of codes and standards used in the design, build and compliance process. Most U.S. communities and many global markets choose the International Codes. ICC Evaluation Service (ICC-ES), a subsidiary of the International Code Council, has been the industry leader in performing technical evaluations for code compliance, fostering safe and sustainable design and construction.

Government Affairs Office
500 New Jersey Avenue, NW, 6th Floor
Washington, DC 20001-2070

Regional Offices
Birmingham, AL; Chicago, IL; Los Angeles, CA

1-888-422-7233
www.iccsafe.org

About the Building Officials Association of Florida

The Building Officials Association of Florida (BOAF) is a member-driven association dedicated to ensuring the health, safety and welfare of the public through safe building practices. BOAF equips building professionals through education, advocacy, leadership and code development. For more information, visit www.boaf.net.