CHAPTER 4 [CE]
COMMERCIAL ENERGY EFFICIENCY

User note:
About this chapter: Chapter 4 presents the paths and options for compliance with the energy efficiency provisions. Chapter 4 contains energy efficiency provisions for the building envelope, fenestration, mechanical systems, appliances, freezers and coolers, kitchen exhaust, interior and exterior lighting, water heating systems, transformers and motors.

SECTION C401
GENERAL

C401.1 Scope. The provisions in this chapter are applicable to commercial buildings and their building sites.

C401.2 Application. Commercial buildings shall comply with one of the following:

1. The requirements of ANSI/ASHRAE/IESNA 90.1.
2. The requirements of Sections C402 through C405 and C408. In addition, commercial buildings shall comply with Section C406 and tenant spaces shall comply with Section C406.1.1.
3. The requirements of Sections C402.5, C403.2, C403.3 through C403.3.2, C403.4 through C403.4.2.3, C403.5.5, C403.7, C403.8.1 through C403.8.4, C403.10.1 through C403.10.3, C403.11, C403.12, C404, C405, C407 and C408. The building energy cost shall be equal to or less than 85 percent of the standard reference design building.

C402.1 General (Prescriptive). Building thermal envelope assemblies for buildings that are intended to comply with the code on a prescriptive basis in accordance with the compliance path described in Item 2 of Section C401.2, shall comply with the following:

1. The opaque portions of the building thermal envelope shall comply with the specific insulation requirements of Section C402.2 and the thermal requirements of either the R-value-based method of Section C402.1.3; the U-, C- and F-factor-based method of Section C402.1.4; or the component performance alternative of Section C402.1.5.
2. Roof solar reflectance and thermal emittance shall comply with Section C402.3.
3. Fenestration in building envelope assemblies shall comply with Section C402.4.
4. Air leakage of building envelope assemblies shall comply with Section C402.5.

Alternatively, where buildings have a vertical fenestration area or skylight area exceeding that allowed in Section C402.4, the building and building thermal envelope shall comply with Section C401.2, Item 1 or Section C401.2, Item 3.

Walk-in coolers, walk-in freezers, refrigerated warehouse coolers and refrigerated warehouse freezers shall comply with Section C403.10.1 or C403.10.2.

C402.1.1 Low-energy buildings. The following low-energy buildings, or portions thereof separated from the remainder of the building by building thermal envelope assemblies complying with this section, shall be exempt from the building thermal envelope provisions of Section C402.

1. Those with a peak design rate of energy usage less than 3.4 Btu/h • ft² (10.7 W/m²) or 1.0 watt per square foot (10.7 W/m²) of floor area for space conditioning purposes.
2. Those that do not contain conditioned space.

C402.1.2 Equipment buildings. Buildings that comply with the following shall be exempt from the building thermal envelope provisions of this code:

1. Are separate buildings with floor area not more than 500 square feet (50 m²).
2. Are intended to house electronic equipment with installed equipment power totaling not less than 7 watts per square foot (75 W/m) and not intended for human occupancy.

3. Have a heating system capacity not greater than (17,000 Btu/h) (5 kW) and a heating thermostat set-point that is restricted to not more than 50°F (10°C).

4. Have an average wall and roof U-factor less than 0.200 in Climate Zones 1 through 5 and less than 0.120 in Climate Zones 6 through 8.

5. Comply with the roof solar reflectance and thermal emittance provisions for Climate Zone 1.

C402.1.3 Insulation component R-value-based method. Building thermal envelope opaque assemblies shall comply with the requirements of Sections C402.2 and C402.4 based on the climate zone specified in Chapter 3. For opaque portions of the building thermal envelope intended to comply on an insulation component R-value basis, the R-values for insulation shall be not less than that specified in Table C402.1.3. Commercial buildings or portions of commercial buildings enclosing Group R occupancies shall use the R-values from the “Group R” column of Table C402.1.3. Commercial buildings or portions of commercial buildings enclosing occupancies other than Group R shall use the R-values from the “All other” column of Table C402.1.3.

C402.1.4 Assembly U-factor, C-factor or F-factor-based method. Building thermal envelope opaque assemblies shall meet the requirements of Sections C402.2 and C402.4 based on the climate zone specified in Chapter 3. Building thermal envelope opaque assemblies intended to comply on an assembly U-, C- or F-factor not greater than that specified in Table C402.1.4. Commercial buildings or portions of commercial buildings enclosing Group R occupancies shall use the U-, C- or F-factor from the “Group R” column of Table C402.1.4. Commercial buildings or portions of commercial buildings enclosing occupancies other than Group R shall use the U-, C- or F-factor from the “All other” column of Table C402.1.4.

C402.1.4.1 Thermal resistance of cold-formed steel walls. U-factors of walls with cold-formed steel studs shall be permitted to be determined in accordance with Equation 4-1:

\[
U = \frac{1}{R_s + (ER)}
\]

(Equation 4-1)

where:

- \(R_s \) = The cumulative R-value of the wall components along the path of heat transfer, excluding the cavity insulation and steel studs.
- \(ER \) = The effective R-value of the cavity insulation with steel studs as specified in Table C402.1.4.

C402.1.5 Component performance alternative. Building envelope values and fenestration areas determined in accordance with Equation 4-2 shall be an alternative to compliance with the U-, F- and C-factors in Tables C402.1.4 and C402.4 and the maximum allowable fenestration areas in Section C402.4.1. Fenestration shall meet the applicable SHGC requirements of Section C402.4.3.

\[
A + B + C + D + E \leq \text{Zero}
\]

(Equation 4-2)

where:

- \(A \) = Sum of the (UA Dif) values for each distinct assembly type of the building thermal envelope, other than slabs on grade and below-grade walls.
- \(UA \text{ Dif} \) = UA Proposed - UA Table.
- \(UA \text{ Proposed} \) = Proposed U-value \(\times \) Area.
- \(UA \text{ Table} \) = (U-factor from Table C402.1.3, C402.1.4 or C402.4) \(\times \) Area.

- \(B \) = Sum of the (FL Dif) values for each distinct slab-on-grade perimeter condition of the building thermal envelope.
- \(FL \text{ Dif} \) = FL Proposed - FL Table.
- \(FL \text{ Proposed} \) = Proposed F-value \(\times \) Perimeter length.
- \(FL \text{ Table} \) = (F-factor specified in Table C402.1.4) \(\times \) Perimeter length.

- \(C \) = Sum of the (CA Dif) values for each distinct below-grade wall assembly type of the building thermal envelope.

Table C402.1.4.1

<table>
<thead>
<tr>
<th>NOMINAL STUD DEPTH (inches)</th>
<th>SPACING OF FRAMING (inches)</th>
<th>CAVITY R-VALUE (insulation)</th>
<th>CORRECTION FACTOR (F_c)</th>
<th>EFFECTIVE R-VALUE (ER) (Cavity R-Value (\times) (F_c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(\frac{1}{2})</td>
<td>16</td>
<td>13</td>
<td>0.46</td>
<td>5.98</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{2})</td>
<td>24</td>
<td>13</td>
<td>0.55</td>
<td>7.15</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>19</td>
<td>0.37</td>
<td>7.03</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>19</td>
<td>0.45</td>
<td>8.55</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>25</td>
<td>0.31</td>
<td>7.75</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE C402.1.3

OPAQUE THERMAL ENVELOPE INSULATION COMPONENT MINIMUM REQUIREMENTS, R-VALUE METHOD

<table>
<thead>
<tr>
<th>CLIMATE ZONE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 EXCEPT MARINE</th>
<th>5 AND MARINE</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attic and other</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
<td>R-38</td>
</tr>
<tr>
<td>Roofs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls, above grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
<td>R-5.7ci</td>
</tr>
<tr>
<td>Metal building</td>
<td>R-13 + R-6.5ci</td>
</tr>
<tr>
<td>Wood framed and other</td>
<td>R-13 + R-3.8ci or R-20</td>
</tr>
<tr>
<td>Walls, below grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below-grade wall</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R-7.5ci</td>
<td>R-7.5ci</td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>NR</td>
<td>NR</td>
<td>R-6.3ci</td>
<td>R-8.3ci</td>
<td>R-10ci</td>
<td>R-10ci</td>
<td>R-10ci</td>
<td>R-12.5ci</td>
</tr>
<tr>
<td>Joist/framing</td>
<td>NR</td>
<td>NR</td>
<td>R-30</td>
<td>R-30</td>
<td>R-30</td>
<td>R-30</td>
<td>R-30</td>
<td>R-30</td>
</tr>
<tr>
<td>Slab-on-grade floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unheated slabs</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R-10 for 24" below</td>
<td>R-10 for 24" below</td>
</tr>
<tr>
<td>Heated slabs</td>
<td>R-7.5 for 12" below</td>
<td>R-7.5 for 12" below</td>
<td>R-7.5 for 12" below</td>
<td>R-10 for 24" below</td>
<td>R-10 for 24" below</td>
<td>R-10 for 24" below</td>
<td>R-15 for 24" below</td>
<td>R-20 for 24" below</td>
</tr>
<tr>
<td>Opague doors</td>
<td>R-4.75</td>
<td>R-4.75</td>
<td>R-4.75</td>
<td>R-4.75</td>
<td>R-4.75</td>
<td>R-4.75</td>
<td>R-4.75</td>
<td>R-4.75</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 4.88 kg/m², 1 pound per cubic foot = 16 kg/m³.

ci = Continuous insulation, NR = No Requirement, LS = Liner System.

a. Assembly descriptions can be found in ANSI/ASHRAE/IESNA Appendix A.

b. Using R-value compliance method, a thermal spacer block shall be provided, otherwise use the U-factor compliance method in Table C402.1.4.

c. R-5.7ci is allowed to be substituted with concrete block walls complying with ASTM C90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally, with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h•ft•°F.

d. Where heated slabs are below grade, below-grade walls shall comply with the exterior insulation requirements for heated slabs.

e. “Mass floors” shall be in accordance with Section C402.2.3.

f. Steel floor joist systems shall be insulated to R-38.

g. “Mass walls” shall be in accordance with Section C402.2.2.

h. The first value is for perimeter insulation and the second value is for slab insulation. Perimeter insulation is not required to extend below the bottom of the slab.

i. Not applicable to garage doors. See Table C402.1.4.
TABLE C402.1.4
OPAQUE THERMAL ENVELOPE ASSEMBLY MAXIMUM REQUIREMENTS, U-FACTOR METHOD a, b

<table>
<thead>
<tr>
<th>CLIMATE ZONE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All other</td>
<td>Group R</td>
<td>All other</td>
<td>Group R</td>
<td>All other</td>
<td>Group R</td>
<td>All other</td>
<td>Group R</td>
</tr>
<tr>
<td>Roofs</td>
<td>U-0.048</td>
<td>U-0.039</td>
<td>U-0.039</td>
<td>U-0.039</td>
<td>U-0.039</td>
<td>U-0.032</td>
<td>U-0.032</td>
<td>U-0.032</td>
</tr>
<tr>
<td>Metal buildings</td>
<td>U-0.044</td>
<td>U-0.035</td>
<td>U-0.035</td>
<td>U-0.035</td>
<td>U-0.035</td>
<td>U-0.035</td>
<td>U-0.031</td>
<td>U-0.031</td>
</tr>
<tr>
<td>Attic and other</td>
<td>U-0.027</td>
<td>U-0.027</td>
<td>U-0.027</td>
<td>U-0.027</td>
<td>U-0.027</td>
<td>U-0.027</td>
<td>U-0.021</td>
<td>U-0.021</td>
</tr>
<tr>
<td>Walls, above grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass c</td>
<td>U-0.151</td>
<td>U-0.151</td>
<td>U-0.123</td>
<td>U-0.123</td>
<td>U-0.104</td>
<td>U-0.104</td>
<td>U-0.090</td>
<td>U-0.090</td>
</tr>
<tr>
<td>Metal building</td>
<td>U-0.079</td>
<td>U-0.079</td>
<td>U-0.079</td>
<td>U-0.079</td>
<td>U-0.052</td>
<td>U-0.052</td>
<td>U-0.052</td>
<td>U-0.052</td>
</tr>
<tr>
<td>Metal framed</td>
<td>U-0.077</td>
<td>U-0.077</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
</tr>
<tr>
<td>Wood framed and other f</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.064</td>
<td>U-0.051</td>
<td>U-0.051</td>
</tr>
<tr>
<td>Walls, below grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below-grade wall c</td>
<td>C-1.140</td>
<td>C-1.140</td>
<td>C-1.140</td>
<td>C-1.140</td>
<td>C-1.140</td>
<td>C-1.140</td>
<td>C-0.119</td>
<td>C-0.119</td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass c</td>
<td>U-0.322</td>
<td>U-0.322</td>
<td>U-0.107</td>
<td>U-0.087</td>
<td>U-0.076</td>
<td>U-0.076</td>
<td>U-0.074</td>
<td>U-0.074</td>
</tr>
<tr>
<td>Joist/framing</td>
<td>U-0.066</td>
<td>U-0.066</td>
<td>U-0.033</td>
<td>U-0.033</td>
<td>U-0.033</td>
<td>U-0.033</td>
<td>U-0.033</td>
<td>U-0.033</td>
</tr>
<tr>
<td>Slab-on-grade floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unheated slabs</td>
<td>F-0.73</td>
<td>F-0.73</td>
<td>F-0.73</td>
<td>F-0.73</td>
<td>F-0.73</td>
<td>F-0.54</td>
<td>F-0.54</td>
<td>F-0.54</td>
</tr>
<tr>
<td>Heated slabs f</td>
<td>F-1.02</td>
<td>F-1.02</td>
<td>F-1.02</td>
<td>F-1.02</td>
<td>F-0.90</td>
<td>F-0.86</td>
<td>F-0.86</td>
<td>F-0.79</td>
</tr>
<tr>
<td>Opaque doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swinging door</td>
<td>U-0.61</td>
<td>U-0.61</td>
<td>U-0.61</td>
<td>U-0.61</td>
<td>U-0.61</td>
<td>U-0.61</td>
<td>U-0.37</td>
<td>U-0.37</td>
</tr>
<tr>
<td>Garage door <14% glazing</td>
<td>U-0.31</td>
<td>U-0.31</td>
<td>U-0.31</td>
<td>U-0.31</td>
<td>U-0.31</td>
<td>U-0.31</td>
<td>U-0.31</td>
<td>U-0.31</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 4.88 kg/m², 1 pound per cubic foot = 16 kg/m³.

a. Where assembly U-factors, C-factors, and F-factors are established in ANSI/ASHRAE/IESNA 90.1 Appendix A, such opaque assemblies shall be a compliance alternative where those values meet the criteria of this table, and provided that the construction, excluding the cladding system on walls, complies with the appropriate construction details from ANSI/ASHRAE/IESNA 90.1 Appendix A.

b. Where U-factors have been established by testing in accordance with ASTM C1363, such opaque assemblies shall be a compliance alternative where those values meet the criteria of this table. The R-value of continuous insulation shall be permitted to be added to or subtracted from the original tested design.

c. Where heated slabs are below grade, below-grade walls shall comply with the U-factor requirements for above-grade mass walls.

d. “Mass floors” shall be in accordance with Section C402.2.3.

e. These C-, F- and U-factors are based on assemblies that are not required to contain insulation.

f. The first value is for perimeter insulation and the second value is for full slab insulation.

g. “Mass walls” shall be in accordance with Section C402.2.2.
CA Dif = CA Proposed - CA Table.
CA Proposed = Proposed C-value x Area.
CA Table = (Maximum allowable C-factor specified in Table C402.1.4) x Area.

Where the proposed vertical glazing area is less than or equal to the maximum vertical glazing area allowed by Section C402.4.1, the value of D (Excess Vertical Glazing Value) shall be zero. Otherwise:

\[D = (DA \times U) - (DA \times U \text{ Wall}), \text{ but not less than zero.} \]

\[DA = (\text{Proposed Vertical Glazing Area}) - (\text{Vertical Glazing Area allowed by Section C402.4.1}). \]

\[UA \text{ Wall} = \text{Sum of the (UA Proposed) values for each opaque assembly of the exterior wall.} \]

\[U \text{ Wall} = \text{Area-weighted average } U\text{-value of all above-grade wall assemblies.} \]

\[UAV = \text{Sum of the (UA Proposed) values for each vertical glazing assembly.} \]

\[UV = \text{UAV/total vertical glazing area.} \]

Where the proposed skylight area is less than or equal to the skylight area allowed by Section C402.4.1, the value of E (Excess Skylight Value) shall be zero. Otherwise:

\[E = (EA \times US) - (EA \times U \text{ Roof}), \text{ but not less than zero.} \]

\[EA = (\text{Proposed Skylight Area}) - (\text{Allowable Skylight Area as specified in Section C402.4.1}). \]

\[U \text{ Roof} = \text{Area-weighted average } U\text{-value of all roof assemblies.} \]

\[UAS = \text{Sum of the (UA Proposed) values for each skylight assembly.} \]

\[US = \text{UAS/total skylight area.} \]

C402.2 Specific building thermal envelope insulation requirements (Prescriptive). Insulation in building thermal envelope opaque assemblies shall comply with Sections C402.2.1 through C402.2.7 and Table C402.1.3.

C402.2.1 Roof assembly. The minimum thermal resistance (R-value) of the insulating material installed either between the roof framing or continuously on the roof assembly shall be as specified in Table C402.1.3, based on construction materials used in the roof assembly. Insulation installed on a suspended ceiling having removable ceiling tiles shall not be considered as part of the minimum thermal resistance of the roof insulation. Continuous insulation board shall be installed in not less than 2 layers and the edge joints between each layer of insulation shall be staggered.

Exceptions:
1. Continuously insulated roof assemblies where the thickness of insulation varies 1 inch (25 mm) or less and where the area-weighted U-factor is equivalent to the same assembly with the R-value specified in Table C402.1.3.

2. Where tapered insulation is used with insulation entirely above deck, the R-value where the insulation thickness varies 1 inch (25 mm) or less from the minimum thickness of tapered insulation shall comply with the R-value specified in Table C402.1.3.

3. Two layers of insulation are not required where insulation tapers to the roof deck, such as at roof drains.

C402.2.1.1 Skylight curbs. Skylight curbs shall be insulated to the level of roofs with insulation entirely above the deck or R-5, whichever is less.

Exception: Unit skylight curbs included as a component of a skylight listed and labeled in accordance with NFRC 100 shall not be required to be insulated.

C402.2.1.2 Insulation requirements for roof replacement. For roof replacement on an existing building where the insulation is entirely above the deck and where the roof slope is less than two units vertical in 12 units horizontal, the insulation shall conform to the energy conservation requirements specified in Tables C402.1.3 and C402.1.4.

Exception: Where the required R-value cannot be provided because of the thickness limitations that occur with the existing rooftop conditions, including heating, ventilation and air-conditioning equipment, low door or glazing heights, parapet heights, or proper roof flashing heights, the maximum thickness of insulation compatible with the available space and existing rooftop conditions shall be installed, as approved by the building official. In no case shall the R-value of the roof insulation be reduced or the U-factor of the roof assembly be increased as part of the roof replacement.

C402.2.2 Above-grade walls. The minimum thermal resistance (R-value) of materials installed in the wall cavity between framing members and continuously on the walls shall be as specified in Table C402.1.3, based on framing type and construction materials used in the wall assembly. The R-value of integral insulation installed in concrete masonry units shall not be used in determining compliance with Table C402.1.3 except as otherwise noted in the table. In determining compliance with Table C402.1.4, the use of the U-factor of concrete masonry units with integral insulation shall be permitted.

“Mass walls” where used as a component in the thermal envelope of a building shall comply with one of the following:

1. Weigh not less than 35 pounds per square foot (171 kg/m²) of wall surface area.
2. Weigh not less than 25 pounds per square foot (122 kg/m²) of wall surface area where the material weight is not more than 120 pcf (1900 kg/m³).
3. Have a heat capacity exceeding 7 Btu/ft² °F (144 kJ/m² °K).
4. Have a heat capacity exceeding 5 Btu/ft² °F (103 kJ/m² °K), where the material weight is not more than 120 pcf (1900 kg/m³).
C402.2.3 Floors. The thermal properties (component R-values or assembly U-, C- or F-factors) of floor assemblies over outdoor air or unconditioned space shall be as specified in Table C402.1.3 or C402.1.4 based on the construction materials used in the floor assembly. Floor framing cavity insulation or structural slab insulation shall be installed to maintain permanent contact with the underside of the subfloor decking or structural slabs.

“Mass floors” where used as a component of the thermal envelope of a building shall provide one of the following weights:

1. 35 pounds per square foot (171 kg/m²) of floor surface area.
2. 25 pounds per square foot (122 kg/m²) of floor surface area where the material weight is not more than 120 pounds per cubic foot (1923 kg/m³).

Exceptions:

1. The floor framing cavity insulation or structural slab insulation shall be permitted to be in contact with the top side of sheathing or continuous insulation installed on the bottom side of floor assemblies where combined with insulation that meets or exceeds the minimum R-value in Table C402.1.3 for “Metal framed” or “Wood framed and other” values for “Walls, Above Grade” and extends from the bottom to the top of all perimeter floor framing or floor assembly members.
2. Insulation applied to the underside of concrete floor slabs shall be permitted an airspace of not more than 1 inch (25 mm) where it turns up and is in contact with the underside of the floor under walls associated with the building thermal envelope.

C402.2.4 Slabs-on-grade perimeter insulation. Where the slab on grade is in contact with the ground, the minimum thermal resistance (R-value) of the insulation around the perimeter of unheated or heated slab-on-grade floors designed in accordance with the R-value method of Section C402.1.3 shall be as specified in Table C402.1.3. The perimeter insulation shall be placed on the outside of the foundation or on the inside of the foundation wall. The perimeter insulation shall extend downward from the top of the slab for the minimum distance shown in the table or to the top of the footing, whichever is less, or downward to not less than the bottom of the slab and then horizontally to the interior or exterior for the total distance shown in the table. Insulation extending away from the building shall be protected by pavement or by not less than 10 inches (254 mm) of soil.

Exception: Where the slab-on-grade floor is greater than 24 inches (61 mm) below the finished exterior grade, perimeter insulation is not required.

C402.2.5 Below-grade walls. The C-factor for the below-grade exterior walls shall be in accordance with Table C402.1.4. The R-value of the insulating material installed continuously within or on the below-grade exterior walls of the building envelope shall be in accordance with Table C402.1.3. The C-factor or R-value required shall extend to a depth of not less than 10 feet (3048 mm) below the outside finished ground level, or to the level of the lowest floor of the conditioned space enclosed by the below-grade wall, whichever is less.

C402.2.6 Insulation of radiant heating systems. Radiant heating system panels, and their associated components that are installed in interior or exterior assemblies shall be insulated to an R-value of not less than R-3.5 on all surfaces not facing the space being heated. Radiant heating system panels that are installed in the building thermal envelope shall be separated from the exterior of the building or unconditioned or exempt spaces by not less than the R-value of insulation installed in the opaque assembly in which they are installed or the assembly shall comply with Section C402.1.4.

Exception: Heated slabs on grade insulated in accordance with Section C402.2.4.

C402.2.7 Airspaces. Where the thermal properties of airspaces are used to comply with this code in accordance with Section C401.2, such airspaces shall be enclosed in an unventilated cavity constructed to minimize airflow into and out of the enclosed airspace. Airflow shall be deemed minimized where the enclosed airspace is located on the interior side of the continuous air barrier and is bounded on all sides by building components.

Exception: The thermal resistance of airspaces located on the exterior side of the continuous air barrier and adjacent to and behind the exterior wall-covering material shall be determined in accordance with ASTM C1363 modified with an airflow entering the bottom and exiting the top of the airspace at an air movement rate of not less than 70 mm/second.

C402.3 Roof solar reflectance and thermal emittance. Low-sloped roofs directly above cooled conditioned spaces in Climate Zones 1, 2 and 3 shall comply with one or more of the options in Table C402.3.

Exceptions: The following roofs and portions of roofs are exempt from the requirements of Table C402.3:

1. Portions of the roof that include or are covered by the following:
 1.1. Photovoltaic systems or components.
 1.2. Solar air or water-heating systems or components.
 1.3. Roof gardens or landscaped roofs.
 1.4. Above-roof decks or walkways.
 1.5. Skylights.
 1.6. HVAC systems and components, and other opaque objects mounted above the roof.
2. Portions of the roof shaded during the peak sun angle on the summer solstice by permanent features of the building or by permanent features of adjacent buildings.
3. Portions of roofs that are ballasted with a minimum stone ballast of 17 pounds per square foot [74 kg/m²] or 23 psf [117 kg/m²] pavers.