PREFAE

Introduction

The I-Codes, including this International Mechanical Code, are used in a variety of ways in both the public and private sectors. Most industry professionals are familiar with the I-Codes as the basis of laws and regulations in communities across the U.S. and in other countries. However, the impact of the codes extends well beyond the regulatory arena, as they are used in a variety of nonregulatory settings, including:

- Voluntary compliance programs such as those promoting sustainability, energy efficiency and disaster resistance.
- The insurance industry, to estimate and manage risk, and as a tool in underwriting and rate decisions.
- Certification and credentialing of individuals involved in the fields of building design, construction and safety.
- Certification of building and construction-related products.
- U.S. federal agencies, to guide construction in an array of government-owned properties.
- Facilities management.
- “Best practices” benchmarks for designers and builders, including those who are engaged in projects in jurisdictions that do not have a formal regulatory system or a governmental enforcement mechanism.
- College, university and professional school textbooks and curricula.
- Reference works related to building design and construction.

In addition to the codes themselves, the code development process brings together building professionals on a regular basis. It provides an international forum for discussion and deliberation about building design, construction methods, safety, performance requirements, technological advances and innovative products.

Development

This 2018 edition presents the code as originally issued, with changes reflected in the 2003 through 2015 editions and further changes approved by the ICC Code Development Process through 2016. A new edition such as this is promulgated every 3 years.

This code is founded on principles intended to establish provisions consistent with the scope of a mechanical code that adequately protects public health, safety and welfare; provisions that do not unnecessarily increase construction costs; provisions that do not restrict the use of new materials, products or methods of construction; and provisions that do not give preferential treatment to particular types or classes of materials, products or methods of construction.
Maintenance

The *International Mechanical Code* is kept up to date through the review of proposed changes submitted by code enforcement officials, industry representatives, design professionals and other interested parties. Proposed changes are carefully considered through an open code development process in which all interested and affected parties may participate.

The ICC Code Development Process reflects principles of openness, transparency, balance, due process and consensus, the principles embodied in OMB Circular A-119, which governs the federal government’s use of private-sector standards. The ICC process is open to anyone; there is no cost to participate, and people can participate without travel cost through the ICC’s cloud-based app, cdp-Access®. A broad cross section of interests are represented in the ICC Code Development Process. The codes, which are updated regularly, include safeguards that allow for emergency action when required for health and safety reasons.

In order to ensure that organizations with a direct and material interest in the codes have a voice in the process, the ICC has developed partnerships with key industry segments that support the ICC’s important public safety mission. Some code development committee members were nominated by the following industry partners and approved by the ICC Board:

- American Institute of Architects (AIA)
- National Association of Home Builders (NAHB)

The code development committees evaluate and make recommendations regarding proposed changes to the codes. Their recommendations are then subject to public comment and council-wide votes. The ICC’s governmental members—public safety officials who have no financial or business interest in the outcome—cast the final votes on proposed changes.

The contents of this work are subject to change through the code development cycles and by any governmental entity that enacts the code into law. For more information regarding the code development process, contact the Codes and Standards Development Department of the International Code Council.

While the I-Code development procedure is thorough and comprehensive, the ICC, its members and those participating in the development of the codes disclaim any liability resulting from the publication or use of the I-Codes, or from compliance or noncompliance with their provisions. The ICC does not have the power or authority to police or enforce compliance with the contents of this code.

Marginal Markings

- Indicates where an entire section, paragraph, exception or table has been deleted or an item in a list of items or a table has been deleted from the 2015 edition of the International Code.
- Indicates a technical change from the requirements of the 2015 edition of the International Code.
- Indicates IMC and IFGC model code language deleted by Oregon. Appendix C is IFGC model code language with some modification by Oregon.
- Indicates a State of Oregon amendment has been made to the International Code.

Minor changes such as section renumbering and removal of references to International Codes are not indicated with a double rule in the margin.

Coordination of the International Codes

The coordination of technical provisions is one of the strengths of the ICC family of model codes. The codes can be used as a complete set of complementary documents, which will provide users
with full integration and coordination of technical provisions. Individual codes can also be used in subsets or as stand-alone documents. To make sure that each individual code is as complete as possible, some technical provisions that are relevant to more than one subject area are duplicated in some of the model codes. This allows users maximum flexibility in their application of the I-Codes.

Italicized Terms

Word and terms defined in Chapter 2, Definitions, are italicized where they appear in code text and the Chapter 2 definitions applies. Where such words and terms are not italicized, common-use definitions apply. The words and terms selected have code-specific definitions that the user should read carefully to facilitate better understanding of the code.
EFFECTIVE USE OF THE OREGON MECHANICAL SPECIALTY CODE

The Oregon Mechanical Specialty Code (OMSC), based on the International Mechanical Code® (IMC®), is a model code that regulates the design and installation of mechanical systems, appliances, appliance venting, duct and ventilation systems, combustion air provisions, hydronic systems and solar systems. The purpose of the code is to establish the minimum acceptable level of safety and to protect life and property from the potential dangers associated with the installation and operation of mechanical systems. The code also protects the personnel that install and replace the systems and appliances addressed by this code.

The OMSC is primarily a prescriptive code with some performance text. The code relies heavily on product specifications and listings to provide much of the appliance and equipment installation requirements. The general Section 105.2 and the exception to Section 403.2 allow designs and installations to be performed by approved engineering methods as alternatives to the prescriptive methods in the code.

The format of the OMSC allows each chapter to be devoted to a particular subject with the exception of Chapter 3, which contains general subject matters that are not extensive enough to warrant their own independent chapter.

Chapter 1 Scope and Administration. Chapter 1 establishes the limits of applicability of the code and describes how the code is to be applied and enforced. A mechanical code, like any other code, is intended to be adopted as a legally enforceable document and it cannot be effective without adequate provisions for its administration and enforcement. The provisions of Chapter 1 establish the authority and duties of the code official appointed by the jurisdiction having authority and also establish the rights and privileges of the design professional, contractor and property owner.

Chapter 2 Definitions. Chapter 2 is the repository of the definitions of terms used in the body of the code. Codes are technical documents and every word and term can impact the meaning of the code text and the intended results. The code often uses terms that have a unique meaning in the code and the code meaning can differ substantially from the ordinarily understood meaning of the term as used outside of the code.

The terms defined in Chapter 2 are deemed to be of prime importance in establishing the meaning and intent of the code text that uses the terms. The user of the code should be familiar with and consult this chapter because the definitions are essential to the correct interpretation of the code and because the user may not be aware that a term is defined.

Chapter 3 General Regulations. Chapter 3 contains broadly applicable requirements related to appliance location and installation, appliance and systems access, protection of structural elements, condensate disposal and clearances to combustibles, among others.

Chapter 4 Ventilation. Chapter 4 includes means for protecting building occupant health by controlling the quality of indoor air and protecting property from the effects of inadequate ventilation. In some cases, ventilation is required to prevent or reduce a health hazard by removing contaminants at their source.

Ventilation is both necessary and desirable for the control of air contaminants, moisture and temperature. Habitable and occupiable spaces are ventilated to promote a healthy and comfortable environment for the occupants. Uninhabited and unoccupied spaces are ventilated to protect the building structure from the harmful effects of excessive humidity and heat. Ventilation of specific occupancies is necessary to minimize the potential for toxic or otherwise harmful substances to reach dangerously high concentrations in air.
Chapter 5 Exhaust Systems. Chapter 5 provides guidelines for reasonable protection of life, property and health from the hazards associated with exhaust systems, air contaminants and smoke development in the event of a fire. In most cases, these hazards involve materials and gases that are flammable, explosive, toxic or otherwise hazardous. Where contaminants are known to be present in quantities that are irritating or harmful to the occupants’ health or are hazardous in a fire, both naturally and mechanically ventilated spaces must be equipped with mechanical exhaust systems capable of collecting and removing the contaminants.

This chapter contains requirements for the installation of exhaust systems, with an emphasis on the structural integrity of the systems and equipment involved and the overall impact of the systems on the fire safety performance of the building. It includes requirements for the exhaust of commercial kitchen grease- and smoke-laden air, hazardous fumes and toxic gases, clothes dryer moisture and heat and dust, stock and refuse materials.

Chapter 6 Duct Systems. Chapter 6 of the code regulates the materials and methods used for constructing and installing ducts, plenums, system controls, exhaust systems, fire protection systems and related components that affect the overall performance of a building’s air distribution system and the reasonable protection of life and property from the hazards associated with air-moving equipment and systems. This chapter contains requirements for the installation of supply, return and exhaust air systems. Specific exhaust systems are also addressed in Chapter 5. Information on the design of duct systems is limited to that in Section 603.2. The code is very much concerned with the structural integrity of the systems and the overall impact of the systems on the fire safety and life safety performance of the building. Design considerations such as duct sizing, maximum efficiency, cost effectiveness, occupant comfort and convenience are the responsibility of the design professional. The provisions for the protection of duct penetrations of wall, floor, ceiling and roof assemblies are extracted from the Building Code.

Chapter 7 Combustion Air. Complete combustion of solid and liquid fuel is essential for the proper operation of appliances, for control of harmful emissions and for achieving maximum fuel efficiency.

The specific combustion air requirements provided in previous editions of the code have been deleted in favor of a single section that directs the user to NFPA 31 for oil-fired appliance combustion air requirements and the manufacturer’s installation instructions for solid-fuel burning appliances. For gas-fired appliances, the provisions of Appendix C of this code are applicable.

Chapter 8 Chimneys and Vents. Chapter 8 is intended to regulate the design, construction, installation, maintenance, repair and approval of chimneys, vents and their connections to solid and liquid fuel-burning appliances. The requirements of this chapter are intended to achieve the complete removal of the products of combustion from fuel-burning appliances and equipment. This chapter includes regulations for the proper selection, design, construction and installation of a chimney or vent, along with appropriate measures to minimize the related potential fire hazards. A chimney or vent must be designed for the type of appliance or equipment it serves. Chimneys and vents are designed for specific applications depending on the flue gas temperatures and the type of fuel being burned in the appliance. Chimneys and vents for gas-fired appliances are covered in Appendix C of this code.

Chapter 9 Specific Appliances, Fireplaces and Solid Fuel-burning Equipment. Chapter 9 sets minimum construction and performance criteria for fireplaces, appliances and equipment and provides for the safe installation of these items. It reflects the code’s intent to specifically address all of the types of appliances that the code intends to regulate. Other regulations affecting the installation of solid fuel-burning fireplaces, appliances and accessory appliances are found in Chapters 3, 6, 7, 8, 10, 11, 12, 13 and 14.
Chapter 10 Boilers, Water Heaters and Pressure Vessels. Chapter 10 presents regulations for the proper installation of boilers, water heaters and pressure vessels to protect life and property from the hazards associated with those appliances and vessels. It applies to all types of boilers and pressure vessels, regardless of size, heat input, operating pressure or operating temperature.

Because pressure vessels are closed containers designed to contain liquids, gases or both under pressure, they must be designed and installed to prevent structural failures that can result in extremely hazardous situations. Certain safety features are therefore provided in Chapter 10 to reduce the potential for explosion hazards.

Chapter 11 Refrigeration. Chapter 11 contains regulations pertaining to the life safety of building occupants. These regulations establish minimum requirements to achieve the proper design, construction, installation and operation of refrigeration systems. Refrigeration systems are a combination of interconnected components and piping assembled to form a closed circuit in which a refrigerant is circulated. The system’s function is to extract heat from a location or medium, and to reject that heat to a different location or medium. This chapter establishes reasonable safeguards for the occupants by defining and mandating practices that are consistent with the practices and experience of the industry.

Chapter 12 Hydronic Piping. Hydronic piping includes piping, fittings and valves used in building space conditioning systems. Applications include hot water, chilled water, steam, steam condensate, brines and water/antifreeze mixtures. Chapter 12 contains the provisions that govern the construction, installation, alteration and repair of all hydronic piping systems that affect reliability, serviceability, energy efficiency and safety.

Chapter 13 Fuel Oil Piping and Storage. Chapter 13 regulates the design and installation of fuel oil storage and piping systems. The regulations include reference to construction standards for above-ground and underground storage tanks, material standards for piping systems (both above-ground and underground) and extensive requirements for the proper assembly of system piping and components. The Building Code covers subjects not addressed in detail here. The provisions in this chapter are intended to prevent fires, leaks and spills involving fuel oil storage and piping systems.

Chapter 14 Solar Thermal Systems. Chapter 14 establishes provisions for the safe installation, operation and repair of solar energy systems used for space heating or cooling, domestic hot water heating or processing. Although such systems use components similar to those of conventional mechanical equipment, many of these provisions are unique to solar energy systems.

Chapter 15 Referenced Standards. Chapter 15 lists all of the product and installation standards and codes that are referenced throughout Chapters 1 through 14. As stated in Section 102.8, these standards and codes become an enforceable part of the code (to the prescribed extent of the reference) as if printed in the body of the code. Chapter 15 provides the full title and edition year of the standards and codes in addition to the address of the promulgators and the section numbers in which the standards and codes are referenced.

Appendix A Chimney Connector Pass-throughs. Appendix A provides figures that illustrate various requirements in the body of the code. Figure A-1 illustrates the chimney connector clearance requirements of Table 803.10.4.

Appendix B Recommended Permit Fee Schedule. Appendix B provides a sample permit fee schedule for mechanical permits. The local jurisdiction can adopt this appendix and fill in the dollar amounts in the blank spaces to establish their official permit fee schedule. The ICC does not establish permit fees because the code is adopted throughout the country and there are vast differences in operating budgets between different parts of the country, as well as between large and small municipalities within the same region.
EFFECTIVE USE OF APPENDIX C—FUEL GAS

The format of Appendix C allows each section to be devoted to a particular subject, with the exception of Sections C301 through C310, which contain general subject matters. The administrative provisions of the Oregon Mechanical Specialty Code shall apply to this appendix.

Sections C101 through C103 Scope and Administration. Sections C101 through C103 establish the limits of applicability of the appendix and describe how the appendix is to be applied and enforced. These provisions establish the authority and duties of the building official appointed by the local municipality and also establish the rights and privileges of the design professional, contractor and property owner.

Sections C201 and C202 Definitions. Sections C201 and C202 are the repository of the definitions of terms used in the body of the appendix. The defined terms are deemed to be of prime importance in establishing the meaning and intent of the text that uses the terms. The user of this appendix should be familiar with and consult these definitions because they are essential for correct interpretation and because the user may not be aware that a term is defined.

Sections C301 through C310 General Regulations. Sections C301 through C310 contain broadly applicable requirements related to appliance location and installation, appliance and systems access, protection of structural elements, and clearances to combustibles, among others. These sections also cover combustion air provisions for gas-fired appliances.

Sections C401 through C417 Gas Piping Installations. Sections C401 through C417 cover the allowable materials for gas piping systems and the sizing and installation of such systems. They also cover pressure regulators, appliance connections and overpressure protection devices. Gas piping systems are sized to supply the maximum demand while maintaining the supply pressure necessary for safe operation of the appliances served.

Sections C501 through C506 Chimneys and Vents. Sections C501 through C506 regulate the design, construction, installation, maintenance, repair and approval of chimneys, vents, venting systems and their connections to gas-fired appliances. Properly designed chimneys, vents and venting systems are necessary to conduct to the outdoors the flue gases produced by the combustion of fuels in appliances. The provisions of this chapter are intended to minimize the hazards associated with high temperatures and potentially toxic and corrosive combustion gases. These sections address all of the factory-built and site-built chimneys, vents and venting systems used to vent all types and categories of appliances. It also addresses direct-vent appliances, integral vent appliances, side-wall mechanically vented appliances and exhaust hoods that convey the combustion byproducts from cooking and other process appliances.

Sections C601 through C636 Specific Appliances. Sections C601 through C636 address specific appliances that the appendix intends to regulate. Each main section applies to a unique type of gas-fired appliance and specifies the product standards to which the appliance must be listed. The general requirements found in the previous Appendix C sections also apply and these sections add the special requirements that are specific to each type of appliance.

Sections C701 through C708 Gaseous Hydrogen Systems. Sections C701 through C708 are specific to gaseous hydrogen generation, storage, distribution and utilization systems, appliances and equipment. Note that hydrogen is not within the definition of “Fuel gas,” but it is, nonetheless, commonly used as a fuel for fuel-cell power generation and fuel-cell powered motor vehicles. The scope of these sections is not limited to any particular use of hydrogen. Hydrogen systems have unique potential hazards because of the specific gravity of the gas, its chemical effect on materials and the fact that it is not odorized.
Section C801 Referenced Standards. Section C801 lists all of the product and installation standards and codes that are referenced throughout Appendix C. As stated in Section C102.8, these standards and codes become an enforceable part of the code (to the prescribed extent of the reference) as if printed in the body of the code. Chapter C801 provides the full title and edition year of the standards and codes in addition to the address of the promulgators and the section numbers in which the standards and codes are referenced.

Appendix C-A Sizing and Capacities of Gas Piping. This appendix is informative and not part of the code. It provides design guidance, useful facts and data and multiple examples of how to apply the sizing tables and sizing methodologies of Sections C401 through C417.

Appendix C-B Sizing of Venting Systems Serving Appliances Equipped with Draft Hoods, Category I Appliances and Appliances Listed for Use with Type B Vents. This appendix is informative and not part of the code. It contains multiple examples of how to apply the vent and chimney tables and methodologies of Sections C501 through C506.

Appendix C-C Exit Terminals of Mechanical Draft and Direct-vent Venting Systems. This appendix is informative and not part of the code. It consists of a figure and notes that visually depict code requirements from Sections C501 through C506 for vent terminals with respect to the openings found in building exterior walls.

Appendix C-D Recommended Procedure for Safety Inspection of an Existing Appliance Installation. This appendix is informative and not part of the code. It provides recommended procedures for testing and inspecting an appliance installation to determine if the installation is operating safely and if the appliance is in a safe condition.
TABLE OF CONTENTS

CHAPTER 1 SCOPE AND ADMINISTRATION . . 1

PART 1—SCOPE AND APPLICATION. 1
Section
- 101 General .. 1
- 102 Applicability 1

PART 2—ADMINISTRATION AND ENFORCEMENT 3
Section
- 103 Department of Mechanical Inspection 3
- 104 Duties and Powers of the Building Official 4
- 105 Approval .. 5
- 106 Permits .. 5
- 107 Inspections and Testing 9
- 108 Violations 10
- 109 Board of Appeals 12
- 110 Temporary Equipment, Systems and Uses 12

CHAPTER 2 DEFINITIONS 13
Section
- 201 General .. 13
- 202 General Definitions 13

CHAPTER 3 GENERAL REGULATIONS 25
Section
- 301 General .. 25
- 302 Protection of Structure 26
- 303 Equipment and Appliance Location 27
- 304 Installation 27
- 305 Piping Support 30
- 306 Access and Service Space 30
- 307 Condensate Disposal 32
- 308 Clearance Reduction 33
- 309 Temperature Control 34
- 310 Heating and Cooling Load Calculations 34

CHAPTER 4 VENTILATION 35
Section
- 401 General .. 35
- 402 Natural Ventilation 35
- 403 Mechanical Ventilation 36
- 404 Enclosed Parking Garages 39
- 405 Systems Control 39
- 406 Ventilation of Uninhabited Spaces 39
- 407 Ambulatory Care Facilities and Group I-2 Occupancies 39

CHAPTER 5 EXHAUST SYSTEMS 45
Section
- 501 General .. 45
- 502 Required Systems 46
- 503 Motors and Fans 52
- 504 Clothes Dryer Exhaust 53
- 505 Domestic Cooking Exhaust Equipment 54
- 506 Commercial Kitchen Hood Ventilation System Ducts and Exhaust Equipment 55
- 507 Commercial Kitchen Hoods 60
- 508 Commercial Kitchen Makeup Air 63
- 509 Fire Suppression Systems 64
- 510 Hazardous Exhaust Systems 64
- 511 Dust, Stock and Refuse Conveying Systems .. 66
- 512 Subslab Soil Exhaust Systems 67
- 513 Smoke Control Systems 67
- 514 Energy Recovery Ventilation Systems 71

CHAPTER 6 DUCT SYSTEMS 73
Section
- 601 General .. 73
- 602 Plenums .. 74
- 603 Duct Construction and Installation 76
- 604 Insulation 78
- 605 Air Filters 78
- 606 Smoke Detection Systems Control 79
- 607 Duct and Transfer Openings 79

CHAPTER 7 COMBUSTION AIR 85
Section
- 701 General .. 85

CHAPTER 8 CHIMNEYS AND VENTS 87
Section
- 801 General .. 87
- 802 Vents .. 88
- 803 Connectors 89
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>804</td>
<td>Direct-vent, Integral Vent and Mechanical Draft Systems</td>
</tr>
<tr>
<td>805</td>
<td>Factory-built Chimneys</td>
</tr>
<tr>
<td>806</td>
<td>Metal Chimneys</td>
</tr>
<tr>
<td>901</td>
<td>General</td>
</tr>
<tr>
<td>902</td>
<td>Masonry Fireplaces</td>
</tr>
<tr>
<td>903</td>
<td>Factory-built Fireplaces</td>
</tr>
<tr>
<td>904</td>
<td>Pellet Fuel-burning Appliances</td>
</tr>
<tr>
<td>905</td>
<td>Fireplace Stoves and Room Heaters</td>
</tr>
<tr>
<td>906</td>
<td>Factory-built Barbecue Appliances</td>
</tr>
<tr>
<td>907</td>
<td>Incinerators and Crematories</td>
</tr>
<tr>
<td>908</td>
<td>Cooling Towers, Evaporative Condensers and Fluid Coolers</td>
</tr>
<tr>
<td>909</td>
<td>Vented Wall Furnaces</td>
</tr>
<tr>
<td>910</td>
<td>Floor Furnaces</td>
</tr>
<tr>
<td>911</td>
<td>Duct Furnaces</td>
</tr>
<tr>
<td>912</td>
<td>Infrared Radiant Heaters</td>
</tr>
<tr>
<td>913</td>
<td>Clothes Dryers</td>
</tr>
<tr>
<td>914</td>
<td>Sauna Heaters</td>
</tr>
<tr>
<td>915</td>
<td>Engine and Gas Turbine-powered Equipment and Appliances</td>
</tr>
<tr>
<td>916</td>
<td>Pool and Spa Heaters</td>
</tr>
<tr>
<td>917</td>
<td>Cooking Appliances</td>
</tr>
<tr>
<td>918</td>
<td>Forced-air Warm-air Furnaces</td>
</tr>
<tr>
<td>919</td>
<td>Conversion Burners</td>
</tr>
<tr>
<td>920</td>
<td>Unit Heaters</td>
</tr>
<tr>
<td>921</td>
<td>Vented Room Heaters</td>
</tr>
<tr>
<td>922</td>
<td>Kerosene and Oil-fired Stoves</td>
</tr>
<tr>
<td>923</td>
<td>Small Ceramic Kilns</td>
</tr>
<tr>
<td>924</td>
<td>Stationary Fuel Cell Power Systems</td>
</tr>
<tr>
<td>925</td>
<td>Masonry Heaters</td>
</tr>
<tr>
<td>926</td>
<td>Gaseous Hydrogen Systems</td>
</tr>
<tr>
<td>927</td>
<td>Evaporative Cooling Equipment</td>
</tr>
<tr>
<td>928</td>
<td>High-volume Large-diameter Fans</td>
</tr>
<tr>
<td>929</td>
<td>Solid Fuel-burning Devices</td>
</tr>
</tbody>
</table>

CHAPTER 10 BOILERS, WATER HEATERS AND PRESSURE VESSELS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>General</td>
</tr>
<tr>
<td>1002</td>
<td>Water Heaters</td>
</tr>
<tr>
<td>1003</td>
<td>Boilers and Pressure Vessels</td>
</tr>
<tr>
<td>1004</td>
<td>Permits Required</td>
</tr>
<tr>
<td>1005</td>
<td>Detailed Requirements</td>
</tr>
<tr>
<td>1006</td>
<td>Expansion Tanks</td>
</tr>
<tr>
<td>1007</td>
<td>Safety or Relief Valve Discharge</td>
</tr>
<tr>
<td>1008</td>
<td>Gas Pressure Regulators</td>
</tr>
<tr>
<td>1009</td>
<td>Clearance for Access</td>
</tr>
<tr>
<td>1010</td>
<td>Boiler Room Enclosures</td>
</tr>
<tr>
<td>1011</td>
<td>Floors</td>
</tr>
<tr>
<td>1012</td>
<td>Chimneys or Vents</td>
</tr>
<tr>
<td>1013</td>
<td>Drainage</td>
</tr>
<tr>
<td>1014</td>
<td>Fuel Supply Piping</td>
</tr>
<tr>
<td>1015</td>
<td>Air for Combustion and Ventilation</td>
</tr>
<tr>
<td>1016</td>
<td>Steam and Hot Water Piping</td>
</tr>
</tbody>
</table>

CHAPTER 11 REFRIGERATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>General</td>
</tr>
<tr>
<td>1102</td>
<td>System Requirements</td>
</tr>
<tr>
<td>1103</td>
<td>Refrigeration System Classification</td>
</tr>
<tr>
<td>1104</td>
<td>System Application Requirements</td>
</tr>
<tr>
<td>1105</td>
<td>Machinery Room, General Requirements</td>
</tr>
<tr>
<td>1106</td>
<td>Machinery Room, Special Requirements</td>
</tr>
<tr>
<td>1107</td>
<td>Refrigerant Piping</td>
</tr>
<tr>
<td>1108</td>
<td>Field Test</td>
</tr>
</tbody>
</table>

CHAPTER 12 HYDRONIC PIPING

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201</td>
<td>General</td>
</tr>
<tr>
<td>1202</td>
<td>Material</td>
</tr>
<tr>
<td>1203</td>
<td>Joints and Connections</td>
</tr>
<tr>
<td>1204</td>
<td>Pipe Insulation</td>
</tr>
<tr>
<td>1205</td>
<td>Valves</td>
</tr>
<tr>
<td>1206</td>
<td>Piping Installation</td>
</tr>
<tr>
<td>1207</td>
<td>Transfer Fluid</td>
</tr>
<tr>
<td>1208</td>
<td>Tests</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

C610 Duct Furnaces ... 259
C611 Nonrecirculating Direct-fired Industrial Air Heaters 259
C612 Recirculating Direct-fired Industrial Air Heaters 260
C613 Clothes Dryers ... 260
C614 Clothes Dryer Exhaust 260
C615 Sauna Heaters .. 260
C616 Engine and Gas Turbine-powered Equipment 260
C617 Pool and Spa Heaters 261
C618 Forced-air Warm-air Furnaces 261
C619 Conversion Burners 261
C620 Unit Heaters ... 262
C621 Unvented Room Heaters 262
C622 Vented Room Heaters 262
C623 Cooking Appliances 262
C624 Water Heaters ... 263
C625 Refrigerators .. 263
C626 Gas-fired Toilets .. 263
C627 Air-conditioning Appliances 263
C628 Illuminating Appliances 264
C629 Small Ceramic Kilns 264
C630 Infrared Radiant Heaters 264
C631 Boilers ... 265
C632 Reserved ... 265
C633 Stationary Fuel-cell Power Systems 265
C634 Chimney Damper Opening Area (IFGS) 265
C635 Gaseous Hydrogen Systems 265
C636 Outdoor Decorative Appliances 265
C701 Gaseous Hydrogen Systems 266
C702 General Definitions ... 266
C703 General Requirements 266
C704 Piping, Use and Handling 267
C705 Testing of Hydrogen Piping Systems 268
C706 Location of Gaseous Hydrogen Systems 269
C707 Operation of Gaseous Hydrogen Systems 269
C708 Design of Liquefied Hydrogen Systems Associated with Hydrogen Vaporization Operations .. 269
C801 Referenced Standards 270

APPENDIX C-A SIZING AND CAPACITIES OF GAS PIPING (IFGS) 275

APPENDIX C-B SIZING OF VENTING SYSTEMS SERVING APPLIANCES EQUIPPED WITH DRAFT HOODS, CATEGORY I APPLIANCES AND APPLIANCES LISTED FOR USE WITH TYPE B VENTS (IFGS) 285

APPENDIX C-C EXIT TERMINALS OF MECHANICAL DRAFT AND DIRECT-VENT VENTING SYSTEMS (IFGS) 295

APPENDIX C-D RECOMMENDED PROCEDURE FOR SAFETY INSPECTION OF AN EXISTING APPLIANCE INSTALLATION (IFGS) 297

INDEX ... 303