Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>ix</td>
</tr>
<tr>
<td>About the International Energy Conservation Code</td>
<td>xi</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xi</td>
</tr>
<tr>
<td>About the Author</td>
<td>xii</td>
</tr>
<tr>
<td>About the International Code Council</td>
<td>xii</td>
</tr>
<tr>
<td>PART I : INTRODUCTION TO ENERGY AND BUILDING CODES</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1: Energy and Building Code Perspectives</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>History of Energy Codes</td>
<td>3</td>
</tr>
<tr>
<td>The Case for Building and Energy Codes</td>
<td>4</td>
</tr>
<tr>
<td>Code Development</td>
<td>4</td>
</tr>
<tr>
<td>The Building Codes: Scope and Limitations</td>
<td>7</td>
</tr>
<tr>
<td>International Building Code (IBC)</td>
<td>7</td>
</tr>
<tr>
<td>International Residential Code (IRC)</td>
<td>8</td>
</tr>
<tr>
<td>International Mechanical Code (IMC)</td>
<td>8</td>
</tr>
<tr>
<td>International Fuel Gas Code (IFGC)</td>
<td>9</td>
</tr>
<tr>
<td>International Plumbing Code (IPC)</td>
<td>9</td>
</tr>
<tr>
<td>International Green Construction Code (IgCC)</td>
<td>10</td>
</tr>
<tr>
<td>International Energy Conservation Code (IECC)</td>
<td>10</td>
</tr>
<tr>
<td>Chapter 2: Legal Aspects, Code Adoption and Code Official Authority</td>
<td>12</td>
</tr>
<tr>
<td>Code Adoption</td>
<td>13</td>
</tr>
<tr>
<td>Amending the IECC</td>
<td>13</td>
</tr>
<tr>
<td>Codes and standards</td>
<td>13</td>
</tr>
<tr>
<td>Federal law</td>
<td>16</td>
</tr>
<tr>
<td>Authority</td>
<td>16</td>
</tr>
<tr>
<td>Duties of the Code Official</td>
<td>16</td>
</tr>
<tr>
<td>Plan review</td>
<td>17</td>
</tr>
<tr>
<td>Inspections</td>
<td>19</td>
</tr>
<tr>
<td>PART II : GENERAL COMMERCIAL ENERGY PROVISIONS</td>
<td>21</td>
</tr>
<tr>
<td>Chapter 3: General Commercial Energy Provisions</td>
<td>22</td>
</tr>
<tr>
<td>Scope</td>
<td>23</td>
</tr>
<tr>
<td>Intent</td>
<td>25</td>
</tr>
<tr>
<td>Applicability</td>
<td>26</td>
</tr>
<tr>
<td>Compliance</td>
<td>26</td>
</tr>
<tr>
<td>Alternate Methods and Materials</td>
<td>26</td>
</tr>
<tr>
<td>Existing Buildings</td>
<td>28</td>
</tr>
<tr>
<td>Historic Buildings</td>
<td>28</td>
</tr>
<tr>
<td>Work Requiring Permits</td>
<td>29</td>
</tr>
<tr>
<td>Change in Use or Occupancy</td>
<td>30</td>
</tr>
</tbody>
</table>
Chapter 4: Administration
 and Enforcement .. 31
Preparing the Plans ... 31
The Construction Drawings
 and Documents .. 32
 The thermal envelope and air sealing 32
 Mechanical system .. 34
 Service water heating ... 35
 Lighting and controls ... 37
Plan Review ... 37
Inspections .. 40
Fees ... 40
Enforcement .. 41
Board of Appeals ... 43
Defined Terms ... 43

PART III : SPECIFIC REQUIREMENTS FOR COMMERCIAL BUILDINGS 45

Chapter 5: Requirements for Commercial Buildings 46
 Climate Zones ... 47
 Design Conditions .. 49
 Insulation Materials .. 49
 Fenestration Products .. 50
 Exposed Foundation Insulation 51

Chapter 6: Efficiency Requirements 52
 Building Envelope Walls and Roofs 53
 Windows, Skylights and Doors 54
 Component Performance Alternative 56
 Performance Compliance 57
 Equipment Buildings ... 57
 Commissioning .. 57

Chapter 7: Controlling Air Leakage 59
 The Air-Barrier Requirements 60
 Compliance .. 60
 Penetrations .. 60
 Infiltration Rates .. 61
 Outdoor Air Openings ... 62
 Loading Docks ... 62
 Vestibules ... 63
Chapter 8: Mechanical Systems ... 64
The Mandatory Requirements ... 65
HVAC load calculation ... 65
Equipment sizing .. 65
Equipment efficiency .. 65
Equipment system control .. 66
Snow and ice melt system controls 67
Heat-Traced Piping ... 68
Ventilation ... 68
Demand-controlled ventilation (DCV) 68
Energy recovery ventilation (ERV) 69
Ducts and Plenums .. 69
Open combustion air ducts .. 70
Pipe insulation .. 70
Commissioning and completion 71
Outdoor heating ... 71
Simple HVAC Systems .. 71
Complex HVAC Systems .. 72
Fan Motors ... 72
Refrigeration Systems ... 73

Chapter 9: Efficient Water Heating 75
Efficiency ... 76
Efficient Heated Water Supply Piping 77
Heat Traps .. 78
Pipe Insulation .. 78
Pool and Spa Heaters and Covers 79

Chapter 10: Electric Power and Light 81
Applicability .. 82
Lighting Controls ... 82
Interior ... 82
Reduction controls ... 82
Additional controls ... 83
Daylight zones ... 83
Specific application lighting controls 85
Interior lighting power ... 85
Exterior Lighting .. 89
Electric Motors and Transformers 90
Elevators, Escalators and Moving Walks 90

Chapter 11: Required Efficiency Options 92
Additional Efficiency Features .. 92
HVAC system performance ... 93
Lighting density .. 93
Lighting controls ... 93
Onsite renewables ... 93
Outdoor air system ... 93
Service water heating ... 94

PART IV : GENERAL RESIDENTIAL ENERGY PROVISIONS

Chapter 12: General Provisions ... 96
 Scope .. 97
 Intent .. 97
 Applicability .. 98
 Low-Energy Buildings .. 98
 Tropical Zones .. 98
 Compliance .. 99
 Alternate Materials ... 99
 Existing Buildings
 and Historical Buildings .. 100
 Permits ... 100
 Change in Occupancy or Use 101

Chapter 13: Administration and Enforcement 102
 Preparing the Plans .. 102
 The Construction Drawings
 and Documents .. 103
 The thermal envelope and air sealing 103
 Building systems .. 105
 Plan Review ... 105
 Inspections ... 106
 Fees ... 107
 Enforcement ... 107
 Board of Appeals ... 108
 Defined Terms .. 108
PART V : SPECIFIC REQUIREMENTS FOR RESIDENTIAL BUILDINGS

Chapter 14: Specific Requirements for Residential Buildings .. 110
 General ... 110

Chapter 15: Building Thermal Envelope
 Requirements ... 112
 About the Thermal Envelope ... 112
 Code Compliance Paths .. 113
 Ceilings and Attics ... 117
 Attic ventilation .. 118
 Walls ... 118
 Mass walls .. 119
 Steel-frame walls ... 120
 Basement walls ... 122
 Crawlspace walls ... 122
 Floors ... 123
 Slab-on-grade floors ... 124
 Sunrooms .. 125
 Fenestration .. 126
 Windows ... 126
 Doors .. 129
 Fenestration replacement .. 130
 Infiltration .. 130
 The Air Barrier and Building Thermal Envelope .. 131
 Blower Door Test .. 133

Chapter 16: Building Systems ... 134
 Programmable Thermostat .. 135
 Ducts ... 135
 Hot Water Systems .. 137
 Mechanical Ventilation ... 137
 Snow Melt .. 140
 Pools and Spas .. 140

Chapter 17: Electrical Power and Lighting ... 141
 Lighting .. 142

Glossary ... 145
Index .. 149
Construction practice, building design, and material development changed little over many centuries. People mostly lived in temperate parts of the world, and cold living spaces were managed simply by layering up with heavy clothing and lighting a fire. Hot temperatures were often avoided by changing living habits to be less active during the day and seeking shade and a breeze. Some cultures developed portable shelters to avoid the heat. In all cases and throughout most of history, people built something to support their need to live in a safe and comfortable place. Building practice developed over time to suit the local climate and make use of local materials, with the common goal of keeping dust, rain, threatening animals, and bugs out and letting light and fresh air in.

Fire safety has long been a concern as well. As more buildings were constructed in denser city patterns and more people gathered in larger buildings, fire issues had to be addressed. When loss of life and massive property damage become intolerable, the need to regulate construction is satisfied by building codes. The regulatory environment aims to fulfill people’s expectation that when they go to work in a building or to an event in a large concert hall, they will breathe clean air and get out safely. The regulations are crafted for the understood need for safety of living and sleeping in the comfort of our homes. The codes adopted by governmental agencies develop over time to refine structural practice so that buildings withstand the forces of nature to safely protect the building occupants and deliver safe, clean water and air to the people inside.

But buildings need to do more than just shelter people and business. As the structural fire resistance and exiting, plumbing, and ventilation systems of buildings became more reliable and the cost of energy increased, building and design professionals began to focus on reducing energy consumption. Regulating energy use in buildings is a relatively new concept in the design and code-enforcement industry. Nationally recognized building safety regulations were published in the early 1900s. The first national energy code was published in the mid-1980s. Code development related to building safety principles has been organized for over a hundred years. Designers, tradespeople, and administrators have had a lot of time to test, try, and teach modern safe building practice. By comparison, the focus on energy efficiency is new to many in the building design and construction trades. The International Energy Conservation Code (IECC) developed quickly into a complex document, and the learning curve was steep. The complexity is necessary as innovation in buildings and building systems increase. As new materials, methods, and equipment are introduced, the code provisions change to keep up with advancements. The regulations may overwhelm the homeowner, designer, or builder unfamiliar with the energy code. Sorting through the complex and detailed provisions can be intimidating.

Energy Code Essentials captures the provisions that regulate energy use in commercial and residential building construction. It is written to provide a readable and user-friendly overview of the IECC, explaining regulations in clear, noncode language. Understanding energy code provisions is essential to the application of the IECC to any building design;
thus, this text is illustrated to further simplify and communicate essential concepts. The text is presented and organized in a user-friendly style with an emphasis on technical accuracy and clear, understandable language. This book is directed to readers familiar with basic construction, architectural, and building system principles but a limited knowledge of energy code requirements and provisions.

Anyone involved in the design, construction, or regulation of building construction can learn from this book. Homeowners, people in nearly any building trade, and those in building design will gain a basic understanding of the principles, provisions, and applications of the technical content of the energy code. The reader will be able to use this book to more fully explore the most common residential and commercial energy efficiency code provisions.

The content of Energy Code Essentials is organized into commercial and residential building provisions and discusses the administrative regulations that a code official in the building department will use to enforce the energy regulations. The climate zone map and how climate zones affect requirements for different parts of the country are explained, as well as how to use the map. Examples of work that requires a permit and, just as important, work that does not need a permit are identified. Coverage is also provided of the level of detail and information to be included in the building plan documents which are prepared for permit submittal. Requirements for what construction and equipment needs to be inspected and when to call for the inspection are explained. The provisions for basement and wall insulation and discussion about the choices that may best suit a particular condition are introduced in easy-to-follow code references. Requirements for windows, doors, and skylights and their selection and installation per the IECC are covered. The provisions to control air leakage are included in the specific requirements section of the book. Efficient mechanical system specification and installation provisions are included, along with what to do to specify and install a compliant hot water system. Discussion also includes the provisions for electric power and regulations applicable to exterior and interior building lighting.

Even with this extensive coverage, this book is not intended to explain all of the provisions of the commercial and residential energy code or all of the acceptable materials and methods of construction. It focuses on the most common and used provisions applicable to many conditions in residential and commercial construction. This is not to say that the information not covered is any less important or less valuable to the reader. This book should be used with the 2015 International Energy Conservation Code, which should be referenced for more detail and specific detail.

Reasonable application of the code provisions is supported by a basic understanding of the scope and intent of both the IECC and the other International Codes. This book and the IECC reference other codes and standards, as such a basic understanding of interrelated concepts and provisions provided in this book is necessary.

Energy Code Essentials contains full-color photos and illustrations to help the reader visualize and understand the application of the code requirements. Practical examples, simplified tables, and highlights of
particularly useful information help clarify the basic requirements of the code and help the reader determine compliance. References to the applicable sections of the 2015 IECC are included to easily locate the applicable code section for more detail and exact code language. A glossary of energy code terms clarifies the meaning of technical terms.

ABOUT THE INTERNATIONAL ENERGY CONSERVATION CODE

The IECC is a comprehensive model code that regulates minimum energy-efficient provisions for new buildings and additions and alterations to existing buildings. There are two separate sets of provisions. The commercial and residential regulations each apply to heating, air-conditioning, ventilation, and lighting systems. Administrative provisions and definitions specific to each commercial and residential set of regulations are also included. The IECC integrates easy-to-understand prescriptive provisions for compliance as well as performance criteria that make possible the use of new materials, new equipment, and new building designs.

The IECC is one of the codes in the family of the International Building Codes published by the International Code Council (ICC). All of these codes are maintained and updated through an open code-development process and are available internationally for adoption by the governing authority to provide consistent and enforceable regulations for the built environment.

ACKNOWLEDGMENTS

Energy Code Essentials is the result of many hours of research, code language analysis and collaborative effort. The author is grateful for the valuable assistance and contributions of Jay A. Woodward, ICC Senior Staff Architect. Jay was the ICC staff secretary to the IECC Code Development Committee during the fast-moving early years of sweeping energy code changes. His unwavering commitment to accuracy and to those actively involved in the tedious code hearing process is much appreciated. The knowledge and experience of the ICC staff were instrumental to its development, and Jay contributed to the accuracy and quality of this product. Hamid Naderi, PE, Vice President of Product Development at the ICC, came up with the concept of this book and provided the initial direction. Thanks to Hamid and Nobina Preston with Cengage Learning for their patience and guidance in preparing the manuscript. Dr. Joseph Lstiburek and Betsy Pettit, F.A.I.A., continually contribute to the ever-growing body of knowledge relating building and energy codes to high-performance building practice and are highly appreciated for their important work. Furthermore, the author would like to thank Pam Cole, Research Scientist in the Energy Policy & Economics Group at the Pacific Northwest National Laboratory, for her review of this edition.

This is the second edition of this publication, updated for the 2015 IECC. The author of the first edition of this publication, based on the
2012 IECC, and independent reviewer of this edition is Stephen Kanipe, the Chief Building Official of Aspen, Colorado. Mr. Kanipe has 25 years of experience in code administration, plan review and field inspection. His career started with and continues to be supported by the Aspen Community Development Department. He was appointed to his current position of Chief Building Official in 1995. Mr. Kanipe was selected by the Board of Directors of the International Conference of Building Officials to participate in the *International Energy Conservation Code Development Committee* and served for five years, including two as chair of that committee. In May of 2009, Stephen was appointed to the ICC’s Sustainable Technology Building Committee to help develop the *International Green Construction Code* (IgCC) and continues to serve on the Energy/Water IgCC Code Development Committee. Mr. Kanipe is a Certified Building Official and LEED Accredited Professional.

ABOUT THE AUTHOR

Andrew Klein, P.E., CEM
Principal, A S Klein Engineering, PLLC
Pasco, Washington

Andrew Klein is the principal of A S Klein Engineering, PLLC, a professional engineering firm specializing in energy management and high-hazard code consulting services. Prior to forming his own firm, Mr. Klein worked for six years as a Process Engineer responsible for the design validation of a $12 billion nuclear waste treatment plant.

Mr. Klein is actively involved in the code development process of the International Code Council (ICC) and serves on two National Fire Protection Association (NFPA) committees and one International Association of Plumbing and Mechanical Officials (IAPMO) committee. Mr. Klein earned his Bachelor of Chemical Engineering at the University of Delaware and his Master of Engineering and Technology Management from Washington State University. He is a licensed Professional Chemical Engineer in Washington State, a Certified Energy Manager (CEM) through the Association of Energy Engineers (AEE) and an ICC-certified Energy Code Specialist.

ABOUT THE INTERNATIONAL CODE COUNCIL

The International Code Council is a member-focused association dedicated to helping the building safety community and construction industry provide safe, sustainable, and affordable construction through the development of codes and standards used in the design, build, and compliance process. Most U.S. communities and many global markets choose the International Codes. ICC Evaluation Service (ICC-ES), a subsidiary of the International Code Council, has been the industry leader in
performing technical evaluations for code compliance fostering safe and sustainable design and construction.

Headquarters:
500 New Jersey Avenue, NW, 6th Floor
Washington, DC 20001-2070

Regional Offices:
Birmingham, AL; Chicago, IL; Los Angeles, CA

1-888-422-7233
www.iccsafe.org