Building Code Basics: Fire
Based on the 2012 International Fire Code®
CONTENTS

Preface ... vii
 About the International Fire Code viii
 Acknowledgments .. ix
 About the Author ... x

Prerequisite Reading—Occupancy Classification xi

PART I: CODE ADMINISTRATION AND ENFORCEMENT

Chapter 1: Introduction to Building and Fire Codes 2
 Code Development .. 3
 The Building and Fire Codes—Scope 5
 International Building Code (IBC) 6
 International Residential Code (IRC) 7
 International Wildland-Urban Interface Code (IWUIC) ... 7
 International Mechanical Code (IMC) 8
 International Fuel Gas Code (IFGC) 8
 International Property Maintenance Code (IPMC) 9
International Fire Code ... 9
 Applicability of the IFC 10
 Retroactive construction requirements in the IFC 11
 Change of use or occupancy 12
 Historic buildings .. 13
 Referenced codes and standards 13

Chapter 2: Legal Aspects, Permits and Inspections 15
 Code Adoption .. 16
 Adoption of the IFC 16
 Amending the IFC .. 16
 Appendices ... 18
 Local and state laws 18
 Authority ... 19
 Authority and duties of the fire code official 19
 Technical assistance 19
 Alternative materials and methods 20
 Authority at fires and other emergencies 21
 Permits .. 23
 Operational and construction permits 23
 Construction documents 25
 Permit application .. 25
 Fees .. 27
 Inspections ... 28
 Right of entry .. 29
 Liability .. 30
 Testing and operation 32
 Unsafe buildings .. 33
 Stop work order .. 33
 Board of Appeals .. 34
PART II: GENERAL SAFETY REQUIREMENTS

Chapter 3: General Precautions Against Fire

Combustible Materials ... 39
Ignition Sources .. 40
Open Flames .. 40
Vacant Premises .. 41
Indoor Displays .. 43
Rooftop Gardens and Landscaped Roofs 43

Chapter 4: Emergency Planning and Preparedness 45

Emergency Forces Notification 46
Public Assemblies and Events 46
Fire Safety and Evacuation Plans 47
Emergency Evacuation Drills 48
Employee Training and Response 49

PART III: SITE AND BUILDING SERVICES

Chapter 5: Fire Service Features 52

Fire Apparatus Access Roads 53
Access to Buildings .. 56
Hazards to Fire Fighters 57
Fire Protection Water Supplies 58
Emergency Responder Radio Coverage 60

Chapter 6: Building Systems 63

Fuel-Fired Appliances .. 64
Emergency and Standby Power Systems 68
Solar Photovoltaic Power Systems 72
Elevator Recall and Maintenance 73
Stationary Storage Battery Systems 74
Commercial Cooking Operations 75
Commercial Kitchen Exhaust Hoods 75
Cooking Oil Storage ... 77
Automatic Fire-Extinguishing Systems 77

Chapter 7: Interior Finish and Decorative Materials 78

Purpose of the Requirements 79
Interior Wall and Ceiling Finish and Trim 81
Upholstered Furniture and Mattresses 83

PART IV: FIRE/LIFE SAFETY SYSTEMS AND FEATURES

Chapter 8: Requirements for All Fire Protection Systems 88

When Are Fire Protection Systems Required? 89
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Documents and Acceptance Testing</td>
<td>91</td>
</tr>
<tr>
<td>Inspection, Testing and Maintenance</td>
<td>94</td>
</tr>
<tr>
<td>Fire Protection System Impairment</td>
<td>96</td>
</tr>
<tr>
<td>Fire Protection System Monitoring</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 9: Automatic Sprinkler Systems</td>
<td>100</td>
</tr>
<tr>
<td>Level of Exit Discharge and Fire Area</td>
<td>101</td>
</tr>
<tr>
<td>Design and Installation Standards</td>
<td>103</td>
</tr>
<tr>
<td>Types of Automatic Sprinkler Systems</td>
<td>105</td>
</tr>
<tr>
<td>Occupancies Requiring Automatic Sprinkler Protection</td>
<td>110</td>
</tr>
<tr>
<td>Fire Department Connection</td>
<td>112</td>
</tr>
<tr>
<td>Chapter 10: Fire Alarm and Detection Systems</td>
<td>114</td>
</tr>
<tr>
<td>Design and Installation Standards</td>
<td>115</td>
</tr>
<tr>
<td>Fundamental Components</td>
<td>118</td>
</tr>
<tr>
<td>Occupancies Requiring Fire Alarm and Detection Systems</td>
<td>121</td>
</tr>
<tr>
<td>Chapter 11: Means of Egress</td>
<td>126</td>
</tr>
<tr>
<td>Introduction to Means of Egress</td>
<td>127</td>
</tr>
<tr>
<td>Occupant Load</td>
<td>130</td>
</tr>
<tr>
<td>Egress Width</td>
<td>132</td>
</tr>
<tr>
<td>Exit Access and Exit Access Travel Distance</td>
<td>134</td>
</tr>
<tr>
<td>Exit Signs and Means of Egress Illumination</td>
<td>137</td>
</tr>
<tr>
<td>Means of Egress Maintenance</td>
<td>139</td>
</tr>
</tbody>
</table>

PART V: SPECIAL PROCESSES AND BUILDING USES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 12: Flammable Finishes</td>
<td>144</td>
</tr>
<tr>
<td>Types of Flammable Finishing Processes</td>
<td>145</td>
</tr>
<tr>
<td>Spray Booth and Spray Room Construction</td>
<td>147</td>
</tr>
<tr>
<td>Mechanical Ventilation</td>
<td>149</td>
</tr>
<tr>
<td>Illumination</td>
<td>151</td>
</tr>
<tr>
<td>Interlocks</td>
<td>152</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>153</td>
</tr>
<tr>
<td>Chapter 13: Motor Fuel-Dispensing Facilities and Repair Garages</td>
<td>155</td>
</tr>
<tr>
<td>Applicable Requirements by Fuel</td>
<td>156</td>
</tr>
<tr>
<td>Dispensing Operations and Devices—All Fuels</td>
<td>156</td>
</tr>
<tr>
<td>Flammable and Combustible Liquid</td>
<td>158</td>
</tr>
<tr>
<td>Motor-Fuel Dispensing</td>
<td>158</td>
</tr>
<tr>
<td>Liquefied Petroleum Gas Dispensing</td>
<td>165</td>
</tr>
<tr>
<td>Chapter 14: High-Piled Combustible Storage</td>
<td>168</td>
</tr>
<tr>
<td>What Is High-Piled Combustible Storage?</td>
<td>169</td>
</tr>
<tr>
<td>Commodity Classification</td>
<td>169</td>
</tr>
<tr>
<td>High-Piled Combustible Storage Areas</td>
<td>172</td>
</tr>
<tr>
<td>Storage Methods</td>
<td>177</td>
</tr>
<tr>
<td>Aisles</td>
<td>181</td>
</tr>
</tbody>
</table>
Chapter 15: Other Special Uses and Processes 184
 Combustible Dust Producing Operations 185
 Fire Safety During Construction and Demolition 187
 Welding and Other Hot Work 188

PART VI: HAZARDOUS MATERIALS

Chapter 16: General Requirements for Hazardous Materials . 192
 Material Classification ... 194
 Hazardous Materials Reporting 199
 Storage and Use .. 201
 Maximum Allowable Quantity per Control Area 202
 Control Areas ... 209
 Hazard Identification Signs 211
 Separation of Incompatible Materials 214

Chapter 17: Compressed Gases 216
 Cylinders, Containers and Tanks 218
 Pressure Relief Devices ... 219
 Markings .. 221
 Security .. 224
 Valve Protection .. 225
 Separation from Hazardous Conditions 225
 Exhausted Enclosures and Gas Cabinets 227
 Leaks, Damage, or Corrosion 228

Chapter 18: Flammable and Combustible Liquids 229
 Classification of Liquids 230
 Containers, Portable Tanks and Stationary Tanks 232
 Design and Construction of Storage Tanks 234
 Storage Tank Openings ... 239

Glossary ... 245

Index ... 249
Fire code enforcement is an important public safety function because unwanted fires injure and kill thousands annually. Unwanted fires also inflict a monetary impact on communities because fires remove businesses from the tax rolls while the damaged building is rebuilt. Statistics confirm that over 40 percent of the businesses that experience a fire never reopen because they lose their customer base. Of concern to any community is the accidental release of hazardous materials because of the potential for fire, explosion, or injury due to incapacitation by the chemical’s constituent. All of these incidents require a response by the fire department, which places fire fighters in danger, especially when an interior rescue and fire attack is required. Given the broad scope of hazards in society, the job of enforcing the fire code is challenging. This is especially true when dealing with hazardous materials, high-piled combustible storage and combustible dust-producing operations.

Building Code Basics: Fire – Based on the 2012 International Fire Code® (IFC®) was developed to address the need for an illustrated text explaining the basics of the fire code. It is intended to provide an understanding of the proper application of the code to the most commonly encountered hazards found in many communities and cities. The text is presented and organized in a user-friendly manner with an emphasis on technical accuracy and clear noncode language. The content is directed to fire service professionals, code officials, designers and others in the building construction industry.

The content of Building Code Basics: Fire is organized to correspond with the arrangement of the 2012 IFC. It commences with a review of the legal aspects associated with the adoption and enforcement of the fire code provisions, including permitting, right of entry and inspector liability. It progresses through common hazards that can be found in any occupancy; site and building features that must be addressed with any new construction; fire and life safety systems and features and special processes and uses; and it concludes with a review of the most commonly encountered hazardous materials. This format is useful to readers because it pulls together related information from the various sections of the IFC into one convenient location while providing a familiar frame of reference to those with code enforcement experience. The book is formatted to follow the steps of new building construction or renovation as well as areas of focus during any fire inspection. This format and arrangement offers the reader a means to understanding why fire code enforcement is an important public safety function and why it is so important to the safety of emergency responders.

Anyone involved in the design, construction or inspection of buildings or industrial processes and hazards will benefit from this book. Beginning and experienced fire inspectors, plans examiners, contractors, engineers, architects, environmental/health and safety professionals, and students in fire science, fire protection and building inspection technology curriculum or related fields of study and work will gain a
fundamental understanding and practical application of the frequently used provisions of the 2012 edition of the IFC.

Reasonable and correct application of the code provisions is enhanced by a basic understanding of the fire code development process, the scope, intent and correlation of the family of the International Codes, and the proper administration of those codes. This fundamental information is provided in the opening chapters of this book. The book also explains the interaction of the fire code with other local and state regulations. Because the content is focused on the fire code, the book includes prerequisite reading that is important in understanding the International Building Code occupancy classification system, how buildings are assigned occupancy classifications and how these classifications are used in the application of the IFC.

This book does not intend to cover all provisions of the IFC or all of the accepted materials and methods for the construction of fire protection systems, features or the storage and handling of combustible and hazardous materials. Focusing in some detail on the most common hazards that are found in nearly every community affords an opportunity to fully understand the basics without exploring every variable and alternative. This is not to say that information not covered is any less important or valid. This book is best used as a companion to the IFC and appropriate National Fire Protection Association standards, which should be referenced for more complete information.

Building Code Basics: Fire features full color illustrations and photographs to assist the reader in visualizing the application of the code requirements. Practical examples, simplified tables and highlights of particularly useful information also aid in understanding the provisions and determining code compliance. References to the applicable 2012 IFC sections are cited to assist readers in locating the corresponding code language and related topics in the code.

ABOUT THE INTERNATIONAL CODE COUNCIL

The International Code Council is a member-focused association. It is dedicated to developing model codes and standards used in the design, build and compliance process to construct safe, sustainable, affordable and resilient structures. Most U.S. communities and many global markets choose the International Codes. ICC Evaluation Service (ICC-ES) is the industry leader in performing technical evaluations for code compliance fostering safe and sustainable design and construction.

Headquarters: 500 New Jersey Avenue, NW, 6th Floor, Washington, DC 20001-2070
District Offices: Birmingham, AL; Chicago, IL; Los Angeles, CA
1-888-422-7233
www.iccsafe.org
ABOUT THE INTERNATIONAL FIRE CODE

The IFC is a comprehensive, stand-alone model code that regulates minimum fire safety requirements for new and existing buildings, facilities, storage and processes. The IFC addresses fire prevention, fire protection, life safety and safe storage and use of hazardous materials in new and existing buildings, facilities and processes. The IFC provides a total approach of controlling hazards in all buildings and sites, regardless of the hazard being indoors or outdoors.

The IFC is a design document. For example, before one constructs a building, the site must be provided with an adequate water supply for fire-fighting operations and a means of building access for emergency responders in the event of a medical emergency, fire or natural or technological disaster. Depending on the building’s occupancy and uses, the IFC regulates the various hazards that may be housed within the building, including refrigeration systems, application of flammable finishes, fueling of motor vehicles, high-piled combustible storage and the storage and use of hazardous materials. The IFC sets forth minimum requirements for these and other hazards and contains requirements for maintaining the life safety of building occupants, the protection of emergency responders, and to limit the damage to a building and its contents as the result of a fire, explosion or unauthorized hazardous material discharge.

ACKNOWLEDGMENTS

Scott Stookey, previously a Senior Technical Staff member with the International Code Council and currently with Austin, Texas Fire Department, authored the 2009 Building Code Basics: Fire. The 2009 edition was the basis for this update. Building Code Basics: Fire is the result of a collaborative effort, and the author is grateful for the valuable contributions by the following talented staff of ICC Business and Product Development: Hamid Naderi, P.E., C.B.O., Senior Vice President Product Development; Doug Thornburg, A.I.A., C.B.O., Vice President and Technical Director of Product Development; and Senior Technical Staff Stephen Van Note, C.B.O. for his contributions throughout this project. Steve’s experience helped make a very challenging project less difficult, and his guidance is appreciated. As always, Doug’s guidance on various means of egress provisions, as well as his experience, proved helpful.
Kevin Scott is President of KH Scott & Associates LLC. Kevin has extensive experience in the development of fire safety, building safety and hazardous materials regulations. Kevin has actively worked for over 25 years in the development of fire code, building code and fire safety regulations at the local, state, national and international levels. Kevin provides consulting services regarding plan review, interpretation, application and enforcement of fire codes and building codes. He previously worked as a Senior Regional Manager with the International Code Council. Prior to that, he was Deputy Chief for the Kern County Fire Department, California, where he worked for 30 years.
Before readers of this book proceed into its content, they must understand that most communities regulate their buildings based on the occupancy classification, which is assigned based on the use and character of a building. A building’s use is evaluated for life safety and fire risks, and its character represents the functions and activities that are expected to occur in the building. A correct occupancy classification establishes the foundation for all the code requirements that are intended for the building’s safe use.

Occupancies are classified into groups and subgroups using the requirements in the *International Building Code* (IBC). Normally the fire code official does not have the legal authority in most communities to assign an occupancy classification—this task is assigned to the building code official. The reason is the IBC addresses not only fire and life safety aspects, but also includes requirements for accessibility of mobility-impaired persons, building sanitation such as potable and wastewater systems, as well as various structural loads of the building itself and external loads including snow, wind, rain and seismic ground movements. A building’s occupancy classification influences these and other building code provisions. The *International Fire Code* (IFC) is primarily concerned with the control of combustible materials and ignition sources, that fire protection systems are properly designed, constructed and maintained, the safety of emergency responders and ensuring processes or uses that represent a fire hazard or a high potential of injury or death, such as the release of hazardous materials, are properly designed, constructed, operated and maintained.

The factors that govern the classification of a building’s use must be carefully considered so that those uses or occupancies having approximately the same combustible content and similar fire hazard characteristics will be classified under the same occupancy heading. Occupancies should be grouped so that fire protection requirements and height and area limitations applicable to the occupancy groups are rational for all building uses within that group. Every classification must be based on the premise that the uses covered by each will have similar fire hazards and life safety problems and that they share like characteristics. Within any given occupancy group or subgroup, no wide differentiation should exist between the fire hazards of the most hazardous and the least hazardous uses.

The occupancy groups include 10 major classifications as follows:

A Assembly
B Business
E Educational
F Factory-Industrial
H Hazardous
I Institutional
M Mercantile
R Residential
S Storage
U Utility and Miscellaneous

In addition to these major classifications, the occupancy groups of Assembly, Factory-Industrial, Hazardous, Institutional, Residential and Storage are further divided into subgroups in order to accommodate some variations in the hazards associated with the uses within each group (for example, hotel versus an apartment dwelling in the Residential classification). The fire load characteristics in Factory-Industrial and Storage occupancies vary considerably depending upon the product or process involved and, therefore, these uses are further classified into subgroups of low and moderate hazard, depending upon the potential fire severity.

As more and more buildings are being designed either for a single specialized purpose or as a part of a larger type of building complex, the need for more special code considerations has been recognized. Some examples of these special uses include automobile parking structures, domed stadiums, high-rise buildings, covered mall buildings, airport terminals and large industrial complexes such as steel mills and assembly plants.