Earthquake Engineering: Theory and Implementation with the 2015
International Building Code, Third Edition

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 QVS/QVS 1 2 0 9 8 7 6 5 4
MHID 1-25-958712-6

The pages within this book were printed on acid-free paper.

Sponsoring Editor
Lauren Poplawski

Production Supervisor
Lynn M. Messina

Composition
Cenveo Publisher Services

Editorial Supervisor
Donna M. Martone

Copy Editor
Cenveo Publisher Services

Art Director, Cover
Jeff Weeks

Project Manager
Namita Gahtori,
Cenveo® Publisher Services

Proofreader
Cenveo Publisher Services

Information contained in this work has been obtained by McGraw-Hill Education from sources believed to be reliable. However, neither McGraw-Hill Education nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill Education nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill Education and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.
Contents

Foreword ... xv
Acknowledgment .. xvii

1 Introduction ... 1

2 Characteristics of Earthquakes 7
 2.1 Causes of Earthquakes 7
 2.2 Plate Tectonic Theory 7
 2.3 Measures of Earthquakes 9
 2.3.1 Magnitude .. 10
 2.3.2 Intensity .. 10
 2.3.3 Instrumental Scale 12
 2.3.4 Fourier Amplitude Spectrum 13
 2.3.5 Power Spectral Density 14
 2.3.6 Response Spectrum 14

3 Linear Elastic Dynamic Analysis 15
 3.1 Introduction ... 15
 3.2 Single Degree of Freedom System 15
 3.2.1 System Formulation 15
 3.2.2 Response Spectrum of Elastic Systems 18
 3.2.3 Design Response Spectrum 21
 3.3 Generalized Single Degree of Freedom 24
 3.4 Multiple Degrees of Freedom System 33
 3.4.1 Multiple Degrees of Freedom System in 2D Analysis 33
 Modal Analysis .. 34
 Orthogonality of Mode Shapes 35
 Caution .. 38
 Importance of Modes 56
 3.4.2 Multiple Degrees of Freedom System in 3D Analysis 57
 Combination Effect of Different Ground Motions 70
 3.4.3 Mass Participation in Buildings 70
 3.5 Shear Beam .. 74
 3.6 Cantilever Flexure Beam 83
 Comparison between Shear Beam and Cantilever Flexure Beam 88
 3.7 Simple Flexure Beam 90

v
Contents

3.8 Axial Beam ... 93
3.9 Finite Element Method ... 95
 3.9.1 Finite Element Concept in Structural Engineering 96
 3.9.2 Stiffness Matrix (Virtual Work Approach) 96
 3.9.3 Mass Matrix (Virtual Work Approach) 102
 3.9.4 Stiffness and Mass Matrices (Galerkin Approach) 103
 3.9.5 Other Matrices ... 105
 3.9.6 Mass Matrix in 2D .. 106
 3.9.7 Application of Consistent Mass Matrix 107
3.10 Incoherence .. 109
3.11 Problems ... 115

4 Nonlinear and Inelastic Dynamic Analysis 121
 4.1 Introduction .. 121
 4.2 Single Degree of Freedom System 123
 4.3 Numerical Methods ... 123
 4.3.1 Central Differences Method 123
 4.3.2 Newmark-β Methods 125
 4.3.3 Wilson-θ Method ... 126
 4.4 Multiple Degrees of Freedom System 131
 4.5 Equivalent Linearization ... 139
 4.6 Problems ... 145

5 Behavior of Structures under Seismic Excitation 147
 5.1 Introduction .. 147
 5.1.1 Force-Reduction Factor, R 147
 5.1.2 Ductility .. 148
 5.1.3 Energy Dissipation Capacity 151
 5.1.4 Self-Centering Capacity 151
 5.1.5 Frequency Shift ... 152
 General Note ... 152
 5.2 Relationship between Force Reduction and Ductility Demand 152
 5.2.1 Equal Displacement Criterion 153
 5.2.2 Equal Energy Criterion 154
 5.2.3 General Relationship between R and μ_d 155
 5.3 Relationship between Global Ductility and Local Ductility 152
 5.4 Local Ductility Capacity .. 163
 5.5 Evaluation of Monotonic Local Ductility Capacity 163
 5.5.1 Monotonic Behavior of Concrete 163
 5.5.2 Monotonic Behavior of Steel 165
 5.5.3 Idealized Strain Compatibility Analysis 166
 Curvature at First Yield ... 166
 Curvature at Ultimate State 167
5.5.4 General Strain Compatibility Analysis \hspace{1cm} 179
5.6 Evaluation of Cyclic Local Ductility Capacity \hspace{1cm} 185
 5.6.1 Cyclic Behavior of Concrete \hspace{1cm} 185
 5.6.2 Cyclic Behavior of Steel \hspace{1cm} 186
 5.6.3 Cyclic Strain Compatibility Analysis \hspace{1cm} 187
5.7 Precast Concrete Structures \hspace{1cm} 188
5.8 Effect of Structure Configuration on Ductility \hspace{1cm} 189
5.9 Second-Order Effect on Ductility \hspace{1cm} 190
5.10 Undesirable Hysteretic Behavior \hspace{1cm} 190
 Undesirable Hysteretic Behavior Due to Material Deterioration \hspace{1cm} 191
 Undesirable Hysteretic Behavior Due to Unfavorable Structural Configuration \hspace{1cm} 191
5.11 Effect of Axial Load on Hysteretic Behavior \hspace{1cm} 192
 5.11.1 Rigid Bar Idealization \hspace{1cm} 193
 Case 1: Rigid Bar under Axial Load and without Springs \hspace{1cm} 194
 Case 2: Rigid Bar with Springs and without Axial Load \hspace{1cm} 194
 Case 3: Rigid Bar with Springs and under Axial Load \hspace{1cm} 196
 5.11.2 Energy Dissipation Factor (α_N) \hspace{1cm} 196
5.12 Design Considerations \hspace{1cm} 199
5.13 Capacity Design \hspace{1cm} 200
5.14 Pushover Analysis \hspace{1cm} 203
5.15 Recommended versus Undesirable Structural Systems \hspace{1cm} 204
5.16 Strain Rate \hspace{1cm} 206
5.17 Problems \hspace{1cm} 207

6 Design of Earthquake-Resistant Buildings (IBC) \hspace{1cm} 211
6.1 Introduction \hspace{1cm} 211
6.2 Definition of Structural Components \hspace{1cm} 212
 6.2.1 Seismic Base \hspace{1cm} 213
6.3 Seismic Design Category \hspace{1cm} 214
6.4 Zoning Classification \hspace{1cm} 215
6.5 Response Spectra \hspace{1cm} 216
6.6 Design Requirements of Seismic Design Categories \hspace{1cm} 217
 Seismic Design Category A \hspace{1cm} 218
 Seismic Design Category B and C \hspace{1cm} 218
 Seismic Design Category D, E, and F \hspace{1cm} 218
6.7 Earthquake-Induced Forces \hspace{1cm} 218
 6.7.1 Regularity of Structures \hspace{1cm} 220
 Horizontal Types of Irregularity \hspace{1cm} 220
 Vertical Types of Irregularity \hspace{1cm} 221
6.7.2 Simplified Lateral Force Analysis Procedure 221
 Vertical Distribution of Base Shear 222
6.7.3 Equivalent Lateral Force Procedure 227
 Vertical Distribution of Base Shear 229
6.7.4 Modal Response Spectrum Analysis 233
6.7.5 Two-Stage Analysis Procedures 243
6.7.6 Time-History Analysis 245
6.7.7 Directional Effect 249
 Redundancy Factor (ρ) 250
6.8 Load Combinations .. 251
6.9 Definitions and Requirements of Structural Systems 259
6.10 Special Topics ... 260
 6.10.1 Diaphragm Design Forces 260
 6.10.2 Torsional Effect 260
 6.10.3 Drift Limitations 261
 6.10.4 Structural Separation 262
 6.10.5 P-Δ Effect 262
6.11 Problems .. 263
APPENDIX 6-1 .. 264

7 Seismic Provisions of Reinforced Concrete Structures (ACI 318) .. 269
 7.1 Introduction .. 269
 7.2 Ordinary Moment Frames 270
 7.2.1 Ordinary Beams 270
 Main Reinforcement 270
 Development of Reinforcement 275
 Shear Reinforcement 277
 7.2.2 Ordinary Beam-Columns 278
 Main Reinforcement 278
 Development of Reinforcement 279
 Shear Reinforcement 279
 7.3 Intermediate Moment Frames 290
 7.3.1 Intermediate Beams 291
 Main Reinforcement 292
 Lateral Reinforcement 292
 7.3.2 Intermediate Beam-Columns 292
 Lateral Reinforcement 293
 7.4 Special Moment Frames 302
 7.4.1 Special Beams 303
 Design Shear, V_e 303
 Dimension Limitations 304
 Main Reinforcement 305
 Lateral Reinforcement 306
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.2</td>
<td>Special Beam-Columns</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Design Forces</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Dimension Limitations</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Main Reinforcement</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Lateral Reinforcement Details</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Minimum Lateral Reinforcement</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Concrete Cover Protection</td>
<td>310</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Special Joints</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Development of Reinforcement</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Confined Concrete</td>
<td>312</td>
</tr>
<tr>
<td>7.5</td>
<td>Ordinary Shear Walls</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>Force Requirements</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>Reinforcement Requirements</td>
<td>323</td>
</tr>
<tr>
<td>7.6</td>
<td>Special Shear Walls</td>
<td>333</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Special Shear Walls without Openings</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Force Requirements</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Reinforcement Requirements</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Boundary Element Requirements</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>Detailing of Boundary Elements</td>
<td>338</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Special Shear Walls with Openings</td>
<td>344</td>
</tr>
<tr>
<td>7.7</td>
<td>Coupling Beams</td>
<td>346</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Detailing of Coupling Beams</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>with Diagonals</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Diagonals</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Coupling Beams</td>
<td>348</td>
</tr>
<tr>
<td>7.8</td>
<td>Diaphragms and Trusses</td>
<td>349</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Structural System</td>
<td>349</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Shear Strength</td>
<td>350</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Diaphragm Chords and Truss Members</td>
<td>351</td>
</tr>
<tr>
<td>7.9</td>
<td>Foundations</td>
<td>351</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Strength Requirements</td>
<td>351</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Detailing Requirements</td>
<td>352</td>
</tr>
<tr>
<td>7.10</td>
<td>Precast Concrete</td>
<td>353</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Precast Special Moment Frames</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Precast Special Frames with Ductile Connections</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Precast Special Frames with Strong Connections</td>
<td>354</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Precast Intermediate Shear Walls</td>
<td>354</td>
</tr>
<tr>
<td>7.10.3</td>
<td>Precast Special Shear Walls</td>
<td>354</td>
</tr>
<tr>
<td>7.11</td>
<td>Nonseismic-Resisting Systems</td>
<td>355</td>
</tr>
<tr>
<td>7.11.1</td>
<td>General Requirements (A)</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Beam Requirements</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Beam-Column Requiremants</td>
<td>355</td>
</tr>
</tbody>
</table>
7.11.2 General Requirements (B) .. 355
 Rectangular Sections .. 356
 Circular and Spiral Sections 356
APPENDIX 7-1 .. 357

8 Introduction to AISC Seismic Provisions
for Structural Steel Buildings 365
 8.1 Introduction .. 365
 8.2 General Requirements .. 366
 Load Combinations ... 366
 Material .. 366
 Demand Critical Welds 366
 Slenderness Requirements 366
 Special Bracing at Plastic Hinge Locations 367
 Protected Zones ... 367
 Column Splices ... 367
 8.3 Structural Systems ... 368
 8.3.1 Ordinary Moment Frames 369
 FR Moment Connections 369
 Demand Critical Welds Regions 370
 8.3.2 Intermediate Moment Frames 370
 Slenderness of Beams 370
 Protected Zones ... 371
 Beam-to-Column Connections 371
 Demand Critical Welds Regions 371
 8.3.3 Special Moment Frames 371
 Column-Beam Moment Ratios 371
 Slenderness of Beams 372
 Protected Zones ... 372
 Beam-to-Column Connections 372
 Lateral Support of Column Flanges 373
 Demand Critical Welds Regions 373
 8.3.4 Special Truss Moment Frames 373
 Dimension Limitations 374
 Special Segments ... 374
 Slenderness of Special Segments 375
 Protected Zones ... 375
 Bracing of Trusses ... 375
 Demand Critical Welds Regions 375
 8.3.5 Ordinary Cantilever Column Systems 375
 Demand Critical Welds Regions 375
 8.3.6 Special Cantilever Column Systems 375
 Slenderness of Columns 376
 Protected Zones ... 376
 Base Plate ... 376
 Demand Critical Welds Regions 376
8.3.7 Ordinary Concentrically Braced Frames 376
 Slenderness of Columns 376
 V-braced and Inverted V-braced Frames 376
 Diagonal Brace Connections 377
 Demand Critical Welds Regions 378

8.3.8 Special Concentrically Braced Frames 378
 Slenderness of Columns 378
 Protected Zones 378
 Strength Requirements 378
 Beam-to-Column Connections 379
 Brace Connections 379
 Diagonal Braces 379
 V- and Inverted V-Type Braces 380
 Demand Critical Welds Regions 380

8.3.9 Eccentrically Braced Frames 381
 Strength Requirements 381
 Slenderness Requirements 382
 Protected Zones 382
 Beam-to-Column Connections 382
 General Link Requirements 382
 Demand Critical Welds Regions 386

8.3.10 Buckling-Restrained Braced Frames 386

8.3.11 Special Plate Shear Walls (SPSW) 387
 Strength Requirements 388
 Slenderness Requirements 389
 Protected Zones 389
 Demand Critical Welds Regions 389

8.4 Allowable Stress Design Approach 390

APPENDIX 8-1 .. 390

9 Design of Earthquake-Resistant Bridges
(AASHTO Code) ... 393

 9.1 Introduction 393
 9.2 AASHTO Procedures for
 Bridge Design 394
 9.3 Response Spectra 397
 9.4 Single Span Bridges 398
 9.5 Bridges in Seismic Zone 1 399
 9.6 Bridges in Seismic Zone 2 400
 9.7 Bridges in Seismic Zones 3 and 4 400
 9.8 Methods of Analysis 401
 9.8.1 Uniform Load Method 401
 Continuous Bridges 401
 Discontinuous Bridges 411
Contents

9.8.2 Single-Mode Spectral Method 411
 Continuous Bridges ... 412
 Sinusoidal Method for Continuous Bridges 419
 Discontinuous Bridges 425
 Rigid Deck Method for Discontinuous Bridges 429
9.8.3 Multiple Mode Spectral Method 438
9.8.4 Time-History Method .. 438
9.8.5 Directional Effect ... 439
9.9 Load Combinations .. 439
9.10 Design Requirements .. 440
9.11 Design Requirements of Reinforced Concrete
 Beam-Columns ... 441
 9.11.1 Bridges in Seismic Zone 1 441
 9.11.2 Bridges in Seismic Zone 2 442
 9.11.3 Bridges in Seismic Zones 3 and 4 442
 Detailing of Transverse Reinforcement 444
9.12 Design Requirements of Reinforced Concrete
 Pier Walls ... 447
9.13 Special Topics .. 448
 9.13.1 $P\Delta$ Requirements 448
 9.13.2 Displacement Requirements (Seismic Seats) 451
 9.13.3 Longitudinal Restrainers 452
 9.13.4 Hold-Down Devices 452
 9.13.5 Liquefaction .. 453
APPENDIX 9-1 ... 453

10 Geotechnical Aspects and Foundations 457
10.1 Introduction ... 457
10.2 Wave Propagation .. 457
10.3 Ground Response .. 459
10.4 Liquefaction ... 462
 Equivalent Uniform Cyclic Shear Stress Method 462
10.5 Slope Stability .. 465
10.6 Lateral Earth Pressure .. 466
10.7 Foundations ... 468
APPENDIX 10-1 ... 474

11 Synthetic Earthquakes .. 477
11.1 Introduction ... 477
11.2 Fourier Transform .. 477
11.3 Power Spectral Density ... 480
11.4 Stationary Random Processes 481
11.5 Random Ground Motion Model 482
11.6 Implementation of Ground Motion Model 486
11.7 Validity of Synthetic Earthquakes 487
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Seismic Isolation</td>
<td>491</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>491</td>
</tr>
<tr>
<td>12.2</td>
<td>Concept of Seismic Isolation</td>
<td>491</td>
</tr>
<tr>
<td>12.3</td>
<td>Lead-Rubber Bearing Isolators</td>
<td>493</td>
</tr>
<tr>
<td>12.4</td>
<td>Analysis of Seismically Isolated Structures</td>
<td>494</td>
</tr>
<tr>
<td>12.5</td>
<td>Design of Seismically Isolated Structures</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Allowable Compressive Stress</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Allowable Shear Deformation (Shear Strain)</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Allowable Rotation</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Stability Requirements</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Lead Core Dimensions</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Shear Stiffness</td>
<td>498</td>
</tr>
<tr>
<td>APPENDIX 12-1</td>
<td></td>
<td>504</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>513</td>
</tr>
</tbody>
</table>
This is the third edition of a one-of-a-kind textbook. This book explains the fundamental concepts of structural dynamics and earthquake engineering with an exceptional clarity and an unprecedented quantity of numerical examples that help the reader fully understand the concepts being discussed.

Professor Armouti has done a phenomenal job of explaining the difficult concepts of linear and nonlinear dynamics and structural response to earthquake excitations. The presentation style, simplicity of language, and the vast number of examples help make the concepts presented easily understandable even to those who face them for the first time.

This is an ideal textbook for teaching a first undergraduate or graduate course in earthquake engineering. It not only explains the structural dynamics theories necessary for understanding linear and nonlinear response to earthquake excitations, but also covers the basic design of earthquake-resistant steel and reinforced concrete buildings, bridges, and isolated systems, in accordance with the latest codes of the United States. The provisions of ASCE 7 standard as well as those in the International Building Code (IBC), ACI-318, and AISC seismic provisions are clearly explained and illustrated through numerical examples.

Students of the subject will find this book easy to follow and will appreciate the wealth of numerical examples presented for every small and large issue discussed. The instructors will find this book useful because of the simplicity of the presentation, the extensive number of solved examples, and the problems contained at the end of the first five chapters. To aid instructors in using the book effectively for teaching the subject, an Instructor’s Manual containing solutions to end of chapter problems and a set of PowerPoint presentation slides are made available to qualified instructors. Last, but not the least, engineering practitioners will find this book to be an invaluable source of information regarding response of various systems and components to earthquake excitations.

When I was first presented with the manuscript of the first edition of this book by the International Code Council, which was seeking my opinion regarding potential publication in the United States, the first thought that crossed my mind was: an earthquake engineering book from Jordan for the U.S. market? This initial reaction, however, rapidly faded when I went over the contents and the presentation of the book.
Foreword

I did strongly recommend publication of the first and second editions of this textbook for the U.S. market and I am very pleased to have done the same for this third edition of the book.

Farzad Naeim, Ph.D., S.E., Esq.
President,
Farzad Naeim, Inc.
Irvine, California
Past President,
Earthquake Engineering Research Institute
I gratefully acknowledge the help, support, and encouragement received from my family, friends, and colleagues throughout Jordan and abroad which have converted my exhaustion into motivation.

THANK YOU ALL !!!