General Comments

Fire is always a concern, whether a building is under construction, is occupied for normal use or is undergoing renovation, restoration, expansion or demolition. But careful planning combined with common sense can make buildings and premises much safer, regardless of the occupancy or other activities at the site.

The primary focus of the requirements in this chapter is making sure the three elements necessary for a fire—ignition source, fuel and oxygen—do not come in contact with one another. NFPA 550 describes in great detail the features of fire safety systems and includes a logic tree called “The Fire Safety Concepts Tree” to graphically show all the possible means of achieving user-defined fire safety objectives. A portion of that tree is reproduced here as Commentary Figure 3 to show how to avoid fire ignition. Activities on this diagram that follow a plus sign (+), also known as an “or” gate, may be undertaken independently of each other to arrive at the desired goal. Alternatives following a dot (•), also known as an “and” gate, must be combined to achieve the desired result.

Commentary Figure 3 shows that eliminating any one of the three elements required for a fire to occur will prevent a fire from happening. If there is no ignition source, a fuel load of any size should not catch fire. If there is no fuel load, there is nothing for an ignition source to ignite. If there is little or no air available to sustain combustion, any fire ignited in a fuel load will quickly die.

The requirements and precautions outlined in this chapter, when applied using good judgment and the common sense mentioned above, will help to foster safety for everyone.

Purpose

The requirements and precautions contained in this chapter are intended to improve premises safety for everyone, including construction workers, tenants, operations and maintenance personnel and emergency response personnel.
SECTION 301
GENERAL

301.1 Scope. The provisions of this chapter shall govern the occupancy and maintenance of all structures and premises for precautions against fire and the spread of fire and general requirements of fire safety.

- The requirements of Chapter 3 prescribe fire safety precautions for conditions that are likely to cause or contribute to the spread of fire in any building or structure or on any premises, regardless of occupancy.

301.2 Permits. Permits shall be required as set forth in Section 105.6 for the activities or uses regulated by Sections 306, 307, 308, and 315.

- Issuing permits gives the fire code official an opportunity to carefully evaluate and regulate hazardous operations. Applicants for permits should be required to demonstrate that their operations comply with the code before the permit is issued. See the commentary to Section 105.6 for a general discussion of operations requiring an operational permit.

SECTION 302
DEFINITIONS

302.1 Definitions. The following terms are defined in Chapter 2:

- BONFIRE.
- HI-BOY.
- HIGH-VOLTAGE TRANSMISSION LINE.
- OPEN BURNING.
- PORTABLE OUTDOOR FIREPLACE.
- POWERED INDUSTRIAL TRUCK.
- RECREATIONAL FIRE.
- SKY LANTERN.

- Definitions of terms can help in the understanding and application of the code requirements. This section directs the code user to Chapter 2 for the proper application of the indicated terms used in this chapter. Terms may be defined in Chapter 2 or in another International Code® (I-Code®) as indicated in Section 201.3, or the dictionary meaning may be all that is needed (see commentaries, Sections 201 through 201.4).

SECTION 303
ASPHALT KETTLES

303.1 Transporting. Asphalt (tar) kettles shall not be transported over any highway, road or street when the heat source for the kettle is operating.

Exception: Asphalt (tar) kettles in the process of patching road surfaces.

- The hazards of hauling a fired kettle of molten asphalt over public ways are obvious. Most asphalt kettles for roofing, paving and similar uses are currently liquefied petroleum gas (LP-gas) fired. Contractors often wish to keep asphalt in a liquid state to save time between jobs and when work is interrupted. Once asphalt is transformed from a solid to a liquid by heating, it retains much of its heat for some time, and although it becomes increasingly viscous as it cools, it remains fluid for a considerable time. Maintaining a fire under a kettle during transport is usually unnecessary and, therefore, prohibited, since little additional heat is required to return the asphalt to a usable consistency. An accident, flat tire or anything else that could cause the kettle to overturn, spilling the molten asphalt in the presence of an open flame, could lead to a serious fire. Even hitting potholes or other bumps in the road could cause the molten asphalt to splash out of the kettle, causing injury to people nearby or damage to property.

The exception for asphalt being used for road repair is necessary for efficient operations for work crews sealing pavement joints and performing similar roadway repairs.

303.2 Location. Asphalt (tar) kettles shall not be located within 20 feet (6096 mm) of any combustible material, combustible building surface or any building opening and within a controlled area identified by the use of traffic cones, barriers or other approved means. Asphalt (tar) kettles and pots shall not be utilized inside or on the roof of a building or structure. Roofing kettles and operating asphalt (tar) kettles shall not block means of egress, gates, roadways or entrances.

- Asphalt kettles sometimes catch fire. Having one located inside a building would present a serious smoke problem, as well as the fire hazards of asphalt spills flowing to lower floors or the release of LP-gas inside the building. Having one located next to quantities of combustible materials would also represent a fire hazard, as well as the possibility that splashes and splatters could damage construction materials beyond use. Keeping egress pathways and other travel lanes free of obstructions provides a needed immediate exit from an area where an asphalt kettle-related incident might occur and enhances access to such areas for the fire department.

303.3 Location of fuel containers. Fuel containers shall be located not less than 10 feet (3048 mm) from the burner.

Exception: Containers properly insulated from heat or flame are allowed to be within 2 feet (610 mm) of the burner.

- This section reduces the likelihood that any gas or vapors escaping from fuel containers would be ignited by the open flame of the kettle burner and that the heat of the burner would cause overheating of the fuel containers.

The exception acknowledges the greater safety of insulated containers.

303.4 Attendant. An operating kettle shall be attended by not less than one employee knowledgeable of the operations and hazards. The employee shall be within 100 feet (30 480 mm)
of the kettle and have the kettle within sight. Ladders or similar obstacles shall not form a part of the route between the attendant and the kettle.

- Having a trained attendant watch the kettle helps to create a safe operation. The attendant is usually responsible for making sure the asphalt is at the proper temperature, the level of liquid in the kettle is maintained at the required level and the fuel supply for the kettle burner is adequate. The attendant should watch for any change in the kettle that would signal the potential for a safety hazard, and adjust the burner output or other factors to keep the kettle in safe operating condition. The attendant is also often responsible for keeping the area surrounding the kettle free of combustible materials and other construction debris that could become a safety hazard.

303.5 Fire extinguishers. There shall be a portable fire extinguisher complying with Section 906 and with a minimum 40-B:C rating within 25 feet (7620 mm) of each asphalt (tar) kettle during the period such kettle is being utilized. Additionally, there shall be one portable fire extinguisher with a minimum 3-A:40-B:C rating on the roof being covered.

- This section defines the type and size of extinguisher that must be available for use, both on the ground near the kettle and on the roof level to which the asphalt is being applied. In the event of a kettle fire, water should not be used as an extinguishing agent because it could cause the molten asphalt to froth and possibly overflow the kettle or spatter over anything or anyone in the surrounding area. See also the commentary to Section 3317.3 for roofing operations during construction.

303.6 Lids. Asphalt (tar) kettles shall be equipped with tight-fitting lids.

- A tight-fitting lid on a hot kettle limits the air supply available to feed a kettle fire. Any fire that might start in a closed kettle will quickly burn itself out because of the limited amount of air available for combustion. The lid also helps prevent splashes and splatters that could cause personal injury.

303.7 Hi-boys. Hi-boys shall be constructed of noncombustible materials. Hi-boys shall be limited to a capacity of 55 gallons (208 L). Fuel sources or heating elements shall not be allowed as part of a hi-boy.

- Hi-boys are used on the roof of a building to transport hot asphalt from a point of supply near the edge of the roof to the site of the roofing application. Due to the hazards of molten asphalt discussed in Section 303.1, hi-boys are limited in size to control the maximum amount of potential spills on the roof, which could ignite and pose a high-challenge fire-suppression operation for the fire department. A limited size also enhances the movability and stability of the hi-boy, thus reducing the potential for a tip over. As a further safeguard against a fire incident, hi-boys are prohibited from being fired or equipped with a fuel source for firing. Hi-boys must also be constructed of noncombustible materials to enhance their durability and prevent the container from contributing fuel to a fire. Hi-boys should be well-maintained, including the frame; steering mechanism; tires or wheels; faucets and fill connections (see commentary, Section 202 for the definition of “Hi-boy”).

303.8 Roofing kettles. Roofing kettles shall be constructed of noncombustible materials.

- The requirement for noncombustible materials represents sound safety practice as well as good business practice. Portions of kettles constructed of combustible materials can be easily destroyed and could lead to larger fires. Replacement of destroyed kettles would be expensive. Paying for other fire damage would be even more costly.

Also note that roofing mops soaked in asphalt or pitch must never be left inside a building, near heating equipment or near combustible materials. These mops are subject to spontaneous heating no matter what material they are made of.

303.9 Fuel containers under air pressure. Fuel containers that operate under air pressure shall not exceed 20 gallons (76 L) in capacity and shall be approved.

- Limiting the size of pressurized fuel containers limits the probability of a container becoming a major fuel source in case of a kettle fire. Requiring the use of approved containers gives the fire code official more control over the type and suitability of the vessel to be used under pressure.

SECTION 304
COMBUSTIBLE WASTE MATERIAL

304.1 Waste accumulation prohibited. Combustible waste material creating a fire hazard shall not be allowed to accumulate in buildings or structures or upon premises.

- Accumulated waste, trash, construction debris and other natural materials, such as grass clippings, leaves and shrubbery cuttings, can become a serious fire hazard. The three subsections that follow this general statement address the most common situations.

304.1.1 Waste material. Accumulations of wastepaper, wood, hay, straw, weeds, litter or combustible or flammable waste or rubbish of any type shall not be permitted to remain on a roof or in any court, yard, vacant lot, alley, parking lot, open space, or beneath a grandstand, bleacher, pier, wharf, manufactured home, recreational vehicle or other similar structure.

- This section considers the kind of waste material that is most likely to accumulate during construction, renovation, additions or demolition and is often referred to as “the housekeeping section.” It prohibits disorderly, unkempt storage or accumulation of trash, waste rags, wastepaper, scrub brush and weeds, litter and other combustible materials. Litter and trash represent a serious fire hazard because of their ease...
of ignition and rapid heat release once ignited. The importance of maintaining property and buildings in good order seems obvious, but sloppy housekeeping still occurs and can be the cause of serious fires. In one of the most serious fires in recent years, improper storage of linseed-oil-soaked rags used to refinish paneling in a high-rise office building caused a fire that destroyed eight floors of the building and killed three fire fighters.

304.1.2 Vegetation. Weeds, grass, vines or other growth that is capable of being ignited and endangering property, shall be cut down and removed by the owner or occupant of the premises. Vegetation clearance requirements in urban-wildland interface areas shall be in accordance with the International Wildland-Urban Interface Code.

Accumulations of natural waste, such as grass clippings, weed growth and shrubbery cuttings, are not only unsightly, but also represent a serious fire hazard. All too often these accumulations occur at or near fence lines that are adjacent to streets or alleys. This makes accidental ignition by a cigarette butt tossed from a passing vehicle a good possibility. Common sense tells us that removal of this kind of waste is beneficial. The rules of nearly all jurisdictions make waste control and removal the responsibility of the building or property owner, his or her agent, the tenant or the contractor if work is being done on the site. Uncontrolled vegetation growth poses substantial risk to areas designated as wildland-urban interface areas. Accordingly, such areas must comply with the provisions of the International Wildland-Urban Interface Code® (IWUIC®).

304.1.3 Space underneath seats. Spaces underneath grandstand and bleacher seating shall be kept free of combustible or flammable materials. Except where enclosed in not less than 1-hour fire-resistance-rated construction in accordance with Section 304.1.3. Spaces underneath grandstands and bleachers shall not be occupied or utilized for purposes other than means of egress except where equipped with an automatic sprinkler system in accordance with Section 903.2.1.5.1, or separated with fire barriers and horizontal assemblies in accordance with Section 1029.1.1.1.

This section provides specific clarification on the use of spaces under grandstands and bleachers and makes it clear that they are only to be used as a means of egress unless the space is provided with an automatic sprinkler system or is separated by fire barriers and horizontal assemblies. See the commentary to Section 304.1.3 for further information.

304.2 Storage. Storage of combustible rubbish shall not produce conditions that will create a nuisance or a hazard to the public health, safety or welfare.

Storage of combustible rubbish either indoors or outdoors must be approved by the fire code official. Combustibles should be accumulated in noncombustible containers, such as metal trash cans with tight lids, steel barrels or steel dumpster bins, which should be removed from the site regularly. The use of plastic waste containers should be discouraged due to the extremely high fuel content of such materials, which can sometimes be several times the fuel content of the waste material they contain. Such containers could, under fire conditions, cause rapid fire spread and overtax sprinkler systems, where installed. This section mentions public health as well as safety and welfare, indicating concern over retention of decomposing organic waste as well as flammable and combustible materials.

304.3 Containers. Combustible rubbish, and waste material kept within or near a structure shall be stored in accordance with Sections 304.3.1 through 304.3.4.

Proper containers must be used to improve the safety of indoor or outdoor storage (in close proximity to buildings) of trash and isolate readily combustible materials. This section introduces the more detailed requirements in Sections 304.3.1 through 304.3.4.

304.3.1 Spontaneous ignition. Materials susceptible to spontaneous ignition, such as oily rags, shall be stored in a listed disposal container. Contents of such containers shall be removed and disposed of daily.

Disposal containers, often called “waste cans” or “oily rag cans,” used for storage of materials that might auto-ignite as a result of the spontaneous combustion process must be tested and listed for that use by a recognized testing laboratory or agency and must bear a label showing that they have been tested, along with the name of the testing agency. Such containers are most commonly round and generally available in sizes ranging from 5 to 40 gallons (19 to 151 L). They are equipped with a manual or foot treadle-operated lid that opens to a maximum angle of 60 degrees (1.05 rad) and closes by gravity. These containers are designed to prevent continuing combustion of the contents if ignition occurs. Container design includes features that keep the can body containing waste from coming into contact with combusti-
ble surfaces of walls or floors (see commentary, Section 202, for the definition of “Listed”). Daily disposal of container contents reduces the amount of time that oily materials will lie dormant, generating internal heat that can lead to ignition. UL 32 provides further information on the construction, testing and listing of these containers.

304.3.2 Capacity exceeding 5.33 cubic feet. Containers with a capacity exceeding 5.33 cubic feet (40 gallons) (0.15 m³) shall be provided with lids. Containers and lids shall be constructed of noncombustible materials or of combustible materials with a peak rate of heat release not exceeding 300 kW/m² where tested in accordance with ASTM E1354 at an incident heat flux of 50 kW/m² in the horizontal orientation.

Exception: Waste baskets complying with Section 808.

R-Requiring larger containers to meet stricter conditions is common sense. The larger the volume of waste each container holds, the larger the fire hazard. Isolating the containers from one another with lids helps reduce the possibility that a fire in one container will spread to nearby containers. The lid also helps to smother a fire within the container by limiting the oxygen available to feed it. Additionally, closed containers protect flammable and combustible materials from potential external ignition sources.

Combustible materials, used in such containers, must meet the performance criteria stated when tested in accordance with ASTM E1354. Most nonmetallic waste containers are manufactured from polyethylene, which has a fuel value of 20,050 Btu per pound (46,934 kJ/kg). In comparison, the fuel value of newsprint paper is 9,000 Btu per pound (20,020 Btu/kg). To contain combustible waste in another combustible material that has twice the fuel potential value makes little sense. This section will prohibit the use of larger, nonfire-retardant polyethylene trash containers within a structure. Several manufacturers have had the formulation for years to make a fire-retardant polyethylene.

The exception to this general provision points to more specific requirements for waste containers in Group I-3 facilities contained in Section 808.1.

304.3.3 Capacity exceeding 1.5 cubic yards. Dumpsters and containers with an individual capacity of 1.5 cubic yards [40.5 cubic feet (1.15 m³)] or more shall not be stored in buildings or placed within 5 feet (1524 mm) of combustible walls, openings or combustible roof eave lines.

Exceptions:

1. Dumpsters or containers that are placed inside buildings in areas protected by an approved automatic sprinkler system installed throughout in accordance with Section 903.3.1.1, 903.3.1.2 or 903.3.1.3.

2. Storage in a structure shall not be prohibited where the structure is of Type I or IIA construction, located not less than 10 feet (3048 mm) from other buildings and used exclusively for dumpster or container storage.

3. Dumpsters or containers that are located adjacent to buildings where the exterior area is protected by an approved automatic sprinkler system.

Although waste containers of this size are nearly always constructed of welded steel because of the weight of the waste load, the very fact that the waste load is large makes the containers a large fire hazard. Keeping these large containers in the open and away from combustible construction is the obvious way to keep the fire hazard low.

Exception 1 permits storage of these large containers indoors if the area is protected by an approved sprinkler system. It would be up to the fire code official to determine the maximum quantities that could be stored under these conditions.

Exception 2 applies only to buildings that are of fire-resistance-rated construction and are used exclusively for container storage. Such facilities might be found in scrap yards or at recycling centers, but rarely, if ever, in other occupancies.

Exception 3 permits storage of these large containers less than 5 feet from combustible walls, openings or combustible roof eave lines if the outside area is protected with an automatic sprinkler system.

304.3.4 Capacity of 1 cubic yard or more. Dumpsters with an individual capacity of 1.0 cubic yard [200 gallons (0.76 m³)] or more shall not be stored in buildings or placed within 5 feet (1524 mm) of combustible walls, openings or combustible roof eave lines unless the dumpsters are constructed of noncombustible materials or of combustible materials with a peak rate of heat release not exceeding 300 kW/m² where tested in accordance with ASTM E1354 at an incident heat flux of 50 kW/m² in the horizontal orientation.

Exceptions:

1. Dumpsters in areas protected by an approved automatic sprinkler system installed throughout in accordance with Section 903.3.1.1, 903.3.1.2 or 903.3.1.3.

2. Storage in a structure shall not be prohibited where the structure is of Type I or IIA construction, located not less than 10 feet (3048 mm) from other buildings and used exclusively for dumpster or container storage.

Medium-density polyethylene dumpsters up to 9 cubic yards [27 ft³ (0.76 m³)] in capacity and that have a fuel content of 20,020 Btu per pound (46,567 kJ/kg) [by comparison, municipal solid waste averages 4,500 Btu/lb (10,467 kJ/kg)] are now being distributed and used. Medium-density polyethylene is essentially equal to the fuel value for gasoline and becomes a burning liquid that spreads and flows when involved in a fire. As such, placing them 5 feet (1524 mm) away from a nearby structure will be of little value unless their flammability hazard is mitigated. This section does that by limiting container heat release rate and heat flux using the test parameters of ASTM E1354. The peak rate of heat release criterion is consistent with the one in Sections 304.3.2 and 808.1.
GENERAL REQUIREMENTS

Exception 1 permits storage of these containers indoors if the area is protected by an approved sprinkler system. It would be up to the fire code official to determine the maximum quantities that could be stored under these conditions.

Exception 2 applies only to buildings that are of fire-resistance-rated construction and are used exclusively for waste container storage. Such facilities might be found in scrap yards or at recycling centers, but rarely, if ever, in other occupancies.

SECTION 305

IGNITION SOURCES

305.1 Clearance from ignition sources. Clearance between ignition sources, such as luminaires, heaters, flame-producing devices and combustible materials, shall be maintained in an approved manner.

- Establishing safe clearances will usually mean following the requirements of the IBC or other codes adopted by the jurisdiction as well as having the approval of the fire code official.

305.2 Hot ashes and spontaneous ignition sources. Hot ashes, cinders, smoldering coals or greasy or oily materials subject to spontaneous ignition shall not be deposited in a combustible receptacle, within 10 feet (3048 mm) of other combustible material including combustible walls and partitions or within 2 feet (610 mm) of openings to buildings.

Exception: The minimum required separation distance to other combustible materials shall be 2 feet (610 mm) where the material is deposited in a covered, noncombustible receptacle placed on a noncombustible floor, ground surface or stand.

- This section covers two different, but equally serious, ignition source problems. First, hot ashes, embers and cinders from fireplaces, stoves or other fireboxes must never be placed in a combustible container. This point seems almost too obvious to be mentioned, but every year fires are started when someone carelessly scoops ashes containing glowing embers into paper bags or cardboard cartons. It is also not uncommon to see construction scrap being burned in steel drums on construction sites in cold weather. Care must be taken when emptying ashes from those containers to make sure no hot coals get dumped on paper waste or other combustible materials.

 The second problem, greasy or oily materials subject to spontaneous combustion, is addressed by requiring such materials to be placed in listed containers (see commentary, Section 304.3.1).

 In both cases, safe distances must be maintained from combustible construction and building openings for added protection.

The exception recognizes the added protection of tight-fitting covers on noncombustible trash containers as well as the reduced fire hazard when the containers are placed on a noncombustible surface.

305.3 Open-flame warning devices. Open-flame warning devices shall not be used along an excavation, road, or any place where the dislodgment of such device might permit the device to roll, fall or slide on to any area or land containing combustible material.

- Open-flame warning devices other than fuseses used to mark road accidents or other short-term emergencies are rarely used today. The old-fashioned kerosene pots used to mark construction hazards in dark areas have been largely replaced by “sawhorse” barriers with battery-powered flashing lights. But, even though use may be limited, the warning in this section is nonetheless real. One fusee not firmly fixed in the ground or on another stable surface can fall into a roadside ditch filled with dry weeds and cause a roadside fire that could spread into dry woodland or crop land, causing enormous fire damage. Likewise, a burned-out hand-held fusee that is carelessly tossed aside while still hot could ignite dry refuse.

305.4 Deliberate or negligent burning. It shall be unlawful to deliberately or through negligence set fire to or cause the burning of combustible material in such a manner as to endanger the safety of persons or property.

- The deliberate setting of fires, whether in a structure or in a waste container located where it could endanger a structure or its occupants, is normally considered arson, which is a felony that is punishable by a lengthy prison sentence. Fortunately, arson is not that common. More likely, a fire would be caused by carelessness or by someone not considering the consequences of his or her actions.

 Regardless of the circumstances, fires must be avoided. Following the requirements in the code as well as those in the IBC will help to maintain a safe, fire-free site. On construction or demolition sites, secure fencing around the site and its waste containers is good protection. Following good housekeeping practices, including routine disposal of combustible materials, is also an excellent first line of protection against fire. An ignition source cannot cause damage to property or endanger life unless there is a fuel load to be ignited.

305.5 Unwanted fire ignitions. Acts or processes that have caused repeated ignition of unwanted fires shall be modified to prevent future ignition.

- Many industrial processes have the potential to produce frequent nuisance fires that generate unwanted alarms necessitating emergency responses that risk the health and safety of fire fighters and citizens. This section empowers the fire code official to alter such processes to mitigate nuisance fires.
SECTION 306
MOTION PICTURE PROJECTION ROOMS AND FILM

306.1 Motion picture projection rooms. Electric arc, xenon or other light source projection equipment that develops hazardous gases, dust or radiation and the projection of ribbon-type cellulose nitrate film, regardless of the light source used in projection, shall be operated within a motion picture projection room complying with Section 409 of the International Building Code.

The requirements in this section are specific to spaces housing equipment used to project cellulose acetate film, also called safety film, which is in common use today. This film has about the same fire hazard characteristics as paper of the same thickness and form. The equipment used to project the film, however, may also present fire or health hazards that can be minimized by proper construction of the room. Section 409 of the IBC covers these construction requirements in detail.

The older type of motion picture film was made of cellulose nitrate, which is also called pyroxylin, which presents a significantly greater fire hazard and, therefore, calls for stricter construction requirements, including sprinklers. These requirements are contained in Sections 903.2.5.3 and 6504. The greater hazard of cellulose nitrate film, which today is found mainly in museum collections and other archives or film preservation facilities, comes from the characteristic of the material to begin degrading at temperatures below its ignition temperature, causing a chemical reaction that can lead to spontaneous combustion. The combustion products of cellulose nitrate are both flammable and extremely toxic because they include oxides of nitrogen. Cellulose nitrate film burns at a rate that is as much as 15 times the rate of common combustibles.

306.2 Cellulose nitrate film storage. Storage of cellulose nitrate film shall be in accordance with NFPA 40.

NFPA 40 contains minimum requirements for a reasonable level of protection for the storage and handling of cellulose nitrate film. The standard does not address the manufacture of the film because it has not been made in the United States since 1951.

SECTION 307
OPEN BURNING, RECREATIONAL FIRES AND PORTABLE OUTDOOR FIREPLACES

307.1 General. A person shall not kindle or maintain or authorize to be kindled or maintained any open burning unless conducted and approved in accordance with Sections 307.1.1 through 307.5.

To control the hazards associated with it, open burning may not be authorized or undertaken without the approvals specified in Section 307. See the commentary to Section 202 for the definition of “Open burning” for a discussion of the types of burning intended to be regulated by this section.

307.1.1 Prohibited open burning. Open burning shall be prohibited when atmospheric conditions or local circumstances make such fires hazardous.

Exception: Prescribed burning for the purpose of reducing the impact of wildland fire when authorized by the fire code official.

This section is intended to protect the public from irresponsible burning when it endangers the safety, health or welfare of persons near the burn site. The terms “offensive” and “objectionable” in the previous code edition were undefined and unreasonably subjective, making the prohibition of open burning due to smoke emissions unenforceable. Also, there is not a referenced standard that provides a method for measuring or otherwise determining when smoke emissions are “offensive or objectionable.” In the absence of such guidance, the legal requirements for consistency of enforcement were unattainable.

Fundamentally and historically, the code has regulated fire hazards and not poor air quality caused by smoke from fires. Experience strongly suggests that the previous wording encouraged citizens to request intervention by the fire code official to resolve neighborhood disputes regarding smoke emissions from many forms of outdoor fires that citizens correctly or incorrectly believed to be “open burning” (e.g., recreational fires, bonfires, charcoal burners, etc.); such situations should be civil matters rather than unlawful acts subject to the penalties prescribed in Section 109.

The revised wording empowers the fire code official to prohibit open burning when such fires would, in fact, be hazardous because of measurable environmental factors, such as weather (e.g., wind, temperature, relative humidity) or fuel characteristics (e.g., fuel moisture content). The exception allows for prescribed burning that is conducted in an effort to minimize the fuel load in wildland and interface areas. Such prescribed burning is a common practice and is done with great planning and forethought and includes safeguards for proper fire control. Annually, several million wildland acres are subjected to prescribed burning in the U.S. to eliminate hazardous fuels, alter vegetation to promote the growth of fuels that produce less heat and burn slower, improve the habitat for wildlife and vegetation, control nuisance pests, and improve access for replanting and other recreational activities. The ability for a fire agency to utilize prescribed burning operations in a season when the fire can be more easily controlled reduces the personnel and resources needed to control a wildland fire when it occurs, and increases the likelihood that fewer structures and lives will be lost to wildland fire.

307.2 Permit required. A permit shall be obtained from the fire code official in accordance with Section 105.6 prior to kindling a fire for recognized silvicultural or range or wildlife management practices, prevention or control of disease or pests, or a bonfire. Application for such approval shall only
be presented by and permits issued to the owner of the land on which the fire is to be kindled.

- This section defines a rather narrow range of purposes for which permits will be issued. Section 105.6.30 covers open-burning permits in general. This section restricts permissible fires to those used for silviculture (the cultivation of forests and shade trees); range or wildlife management; pest control; and bonfires as defined in the code. This section further restricts the permitting process to owners of the land on which the fire is to be kindled (see commentary, Section 301.2).

307.2.1 Authorization. Where required by state or local law or regulations, open burning shall only be permitted with prior approval from the state or local air and water quality management authority, provided that all conditions specified in the authorization are followed.

- This section requires permit applicants to comply with state and local regulations covering air and water quality as well as safety regulations established by the jurisdiction having authority.

307.3 Extinguishment authority. Where open burning creates or adds to a hazardous situation, or a required permit for open burning has not been obtained, the fire code official is authorized to order the extinguishment of the open burning operation.

- Where the fire code official finds that open burning creates a hazardous condition such as the potential for igniting exposures or is unsafe because of atmospheric conditions, this section establishes the authority of the fire code official to order that the open burning fire be extinguished. Note that the fire department is not included in the extinguishment scenario but, rather, the section relies on the provisions of Section 110.3.2, which establishes who must comply with the extinguishment order, i.e., "... the owner, the owner's authorized agent, operator, occupant or other person responsible for the condition or violation ..." This enhances public safety by not requiring the commitment of a piece of fire apparatus to extinguish an open-burning fire that is not an emergency (see commentary, Section 110.3.2).

307.4 Location. The location for open burning shall be not less than 50 feet (15 240 mm) from any structure, and provisions shall be made to prevent the fire from spreading to within 50 feet (15 240 mm) of any structure.

- This section restricts the location of these large fires to open areas in which sparks and burning embers would be unlikely to endanger structures and smoke would not be a significant hazard to public health. Allowing a bonfire in a barbeque pit automatically restricts the size of the fire to the fuel load that can be contained within the noncombustible fire pit.

- Bonfires usually are large and associated with some kind of planned event (for example, a school pep rally, holiday celebration or camp celebration). This section restricts the location of these large fires to open areas in which sparks and burning embers would be unlikely to endanger structures and smoke would not be a significant hazard to public health. Allowing a bonfire in a barbeque pit automatically restricts the size of the fire to the fuel load that can be contained within the noncombustible fire pit.

307.4.1 Bonfires. A bonfire shall not be conducted within 50 feet (15 240 mm) of a structure or combustible material unless the fire is contained in a barbecue pit. Conditions that could cause a fire to spread within 50 feet (15 240 mm) of a structure shall be eliminated prior to ignition.

- Bonfires usually are large and associated with some kind of planned event (for example, a school pep rally, holiday celebration or camp celebration). This section restricts the location of these large fires to open areas in which sparks and burning embers would be unlikely to endanger structures and smoke would not be a significant hazard to public health. Allowing a bonfire in a barbeque pit automatically restricts the size of the fire to the fuel load that can be contained within the noncombustible fire pit.

307.4.2 Recreational fires. Recreational fires shall not be conducted within 25 feet (7620 mm) of a structure or combustible material. Conditions that could cause a fire to spread within 25 feet (7620 mm) of a structure shall be eliminated prior to ignition.

- Recreational fires are usually fairly small, but can still represent a significant fire hazard if the area in which they are kindled is not kept free of combustible trash and debris. Basic fire safety practices followed by campers make good guidelines. No fire should ever be kindled in a location where it would endanger structures or would be likely to ignite combustible materials close by.

307.4.3 Portable outdoor fireplaces. Portable outdoor fireplaces shall be used in accordance with the manufacturer’s instructions and shall not be operated within 15 feet (3048 mm) of a structure or combustible material.

- Portable outdoor fireplaces (also known as patio fireplaces) designed to burn solid fuel are available at retailers ranging from big box stores to local grocery stores. Their widespread availability and use created considerable confusion for citizens and the fire service regarding if or how they were regulated by the code since Sections 307 and 308 were essentially silent on the use of this specific type of device. Fires in portable outdoor fireplaces could not be considered a “recreational fire” because critical to that definition is the concept that the fire is not contained in an incinerator, outdoor fireplace, barbeque grill or barbeque pit. It could then have been suggested that a portable outdoor fireplace is merely a type of “outdoor fireplace,” but the code did not contain any references pertaining to where an outdoor fireplace could be located or operated. Since the use and hazards

3-8 2018 IFC® CODE and COMMENTARY