Get a free 45-day online subscription to ICC’s premiumACCESS™ 2018 I-Codes Complete Collection. Test drive many powerful, time-saving tools available to you from premiumACCESS. To activate your bonus, visit www.iccsafe.org/codebonus.
PREFACE

Introduction

The I-Codes, including this International Mechanical Code, are used in a variety of ways in both the public and private sectors. Most industry professionals are familiar with the I-Codes as the basis of laws and regulations in communities across the U.S. and in other countries. However, the impact of the codes extends well beyond the regulatory arena, as they are used in a variety of nonregulatory settings, including:

- Voluntary compliance programs such as those promoting sustainability, energy efficiency and disaster resistance.
- The insurance industry, to estimate and manage risk, and as a tool in underwriting and rate decisions.
- Certification and credentialing of individuals involved in the fields of building design, construction and safety.
- Certification of building and construction-related products.
- U.S. federal agencies, to guide construction in an array of government-owned properties.
- Facilities management.
- “Best practices” benchmarks for designers and builders, including those who are engaged in projects in jurisdictions that do not have a formal regulatory system or a governmental enforcement mechanism.
- College, university and professional school textbooks and curricula.
- Reference works related to building design and construction.

In addition to the codes themselves, the code development process brings together building professionals on a regular basis. It provides an international forum for discussion and deliberation about building design, construction methods, safety, performance requirements, technological advances and innovative products.

Development

This 2018 edition presents the code as originally issued, with changes reflected in the 2003 through 2015 editions and further changes approved by the ICC Code Development Process through 2016. A new edition such as this is promulgated every 3 years.

This code is founded on principles intended to establish provisions consistent with the scope of a mechanical code that adequately protects public health, safety and welfare; provisions that do not unnecessarily increase construction costs; provisions that do not restrict the use of new materials, products or methods of construction; and provisions that do not give preferential treatment to particular types or classes of materials, products or methods of construction.
The International Mechanical Code is kept up to date through the review of proposed changes submitted by code enforcement officials, industry representatives, design professionals and other interested parties. Proposed changes are carefully considered through an open code development process in which all interested and affected parties may participate.

The ICC Code Development Process reflects principles of openness, transparency, balance, due process and consensus, the principles embodied in OMB Circular A-119, which governs the federal government’s use of private-sector standards. The ICC process is open to anyone; there is no cost to participate, and people can participate without travel cost through the ICC’s cloud-based app, cdpAccess®. A broad cross section of interests are represented in the ICC Code Development Process. The codes, which are updated regularly, include safeguards that allow for emergency action when required for health and safety reasons.

In order to ensure that organizations with a direct and material interest in the codes have a voice in the process, the ICC has developed partnerships with key industry segments that support the ICC’s important public safety mission. Some code development committee members were nominated by the following industry partners and approved by the ICC Board:

- American Institute of Architects (AIA)
- National Association of Home Builders (NAHB)

The code development committees evaluate and make recommendations regarding proposed changes to the codes. Their recommendations are then subject to public comment and council-wide votes. The ICC’s governmental members—public safety officials who have no financial or business interest in the outcome—cast the final votes on proposed changes.

The contents of this work are subject to change through the code development cycles and by any governmental entity that enacts the code into law. For more information regarding the code development process, contact the Codes and Standards Development Department of the International Code Council.

While the I-Code development procedure is thorough and comprehensive, the ICC, its members and those participating in the development of the codes disclaim any liability resulting from the publication or use of the I-Codes, or from compliance or noncompliance with their provisions. The ICC does not have the power or authority to police or enforce compliance with the contents of this code.

Code Development Committee Responsibilities

(Letter Designations in Front of Section Numbers)

In each code development cycle, proposed changes to this code are considered at the Committee Action Hearings by the International Mechanical Code Development Committee, whose action constitutes a recommendation to the voting membership for final action on the proposed change. Code change proposals to sections of the code that are preceded by a bracketed letter designation are considered by a different code development committee. For example, proposed changes to code sections that have [BG] in front of them (e.g., [BG] 309.1) are considered by the IBC—General Code Development Committee at the Committee Action Hearing.

The bracketed letter designations for committees responsible for portions of this code are as follows:

- **[A]** = Administrative Code Development Committee
- **[BE]** = IBC—Egress Code Development Committee
- **[BF]** = IBC—Fire Safety Code Development Committee
- **[BG]** = IBC—General Code Development Committee
- **[BS]** = IBC—Structural Code Development Committee
For the development of the 2021 edition of the I-Codes, there will be two groups of code development committees and they will meet in separate years.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>International Building Code</td>
<td>Administrative Provisions (Chapter 1 of all codes except IECC, IRC and IgCC, administrative updates to currently referenced standards, and designated definitions)</td>
</tr>
<tr>
<td>– Egress (Chapters 10, 11, Appendix E)</td>
<td>International Fire Code</td>
</tr>
<tr>
<td>– Fire Safety (Chapters 7, 8, 9, 14, 26)</td>
<td>– Structural (Chapters 15–25, Appendices F, G, H, I, J, L, M)</td>
</tr>
<tr>
<td>– General (Chapters 2–6, 12, 27–33, Appendices A, B, C, D, K, N)</td>
<td>International Fuel Gas Code</td>
</tr>
<tr>
<td>International Fire Code</td>
<td>International Energy Conservation Code—Commercial</td>
</tr>
<tr>
<td>International Fuel Gas Code</td>
<td>International Existing Building Code</td>
</tr>
<tr>
<td>International Mechanical Code</td>
<td>International Energy Conservation Code—Residential</td>
</tr>
<tr>
<td>– IECC—Residential</td>
<td>– IRC—Energy (Chapter 11)</td>
</tr>
<tr>
<td>– IRC—Mechanical (Chapters 12–23)</td>
<td>International Property Maintenance Code</td>
</tr>
<tr>
<td>– IRC—Plumbing (Chapters 25–33, Appendices G, I, N, P)</td>
<td>International Green Construction Code (Chapter 1)</td>
</tr>
<tr>
<td>International Residential Code</td>
<td>International Private Sewage Disposal Code</td>
</tr>
<tr>
<td>International Swimming Pool and Spa Code</td>
<td>International Residential Code</td>
</tr>
<tr>
<td>International Zoning Code</td>
<td>International Residential Code</td>
</tr>
</tbody>
</table>

Note: Proposed changes to the ICC Performance Code™ will be heard by the code development committee noted in brackets [] in the text of the ICC Performance Code™.

Code change proposals submitted for code sections that have a letter designation in front of them will be heard by the respective committee responsible for such code sections. Because different committees hold Committee Action Hearings in different years, proposals for this code will be heard by committees in both the 2018 (Group A) and the 2019 (Group B) code development cycles.

For example, every section of Chapter 1 of this code is designated as the responsibility of the Administrative Code Development Committee, and that committee is part of the Group B code hearings. This committee will conduct its code development hearings in 2019 to consider all code change proposals for Chapter 1 of this code and proposals for Chapter 1 of all I-Codes except the International Energy Conservation Code, International Residential Code and International Green Construction Code. Therefore, any proposals received for Chapter 1 of this code will be assigned to the Administrative Code Development Committee for consideration in 2019.

Another example is Section [F] 606.4 of this code, which is designated as the responsibility of the International Fire Code Development Committee. This committee will conduct its code development hearings in 2019 to consider code change proposals in its purview, which includes any proposals to Section [F] 606.4.
In some cases, another committee in Group A will be responsible for a section of this code. For example, Section 607 has a [BF] in front of the numbered sections, indicating that these sections of the code are the responsibility of one of the International Building Code Development Committees. The International Building Code is in Group A; therefore, any code change proposals to this section will be due before the Group A deadline of January 2018, and these code change proposals will be assigned to the appropriate International Building Code Development Committee for consideration.

It is very important that anyone submitting code change proposals understands which code development committee is responsible for the section of the code that is the subject of the code change proposal. For further information on the Code Development Committee responsibilities, please visit the ICC website at www.iccsafe.org/scoping.

Marginal Markings

Solid vertical lines in the margins within the body of the code indicate a technical change from the requirements of the 2015 edition. Deletion indicators in the form of an arrow (→) are provided in the margin where an entire section, paragraph, exception or table has been deleted or an item in a list of items or a table has been deleted.

Coordination of the International Codes

The coordination of technical provisions is one of the strengths of the ICC family of model codes. The codes can be used as a complete set of complementary documents, which will provide users with full integration and coordination of technical provisions. Individual codes can also be used in subsets or as stand-alone documents. To make sure that each individual code is as complete as possible, some technical provisions that are relevant to more than one subject area are duplicated in some of the model codes. This allows users maximum flexibility in their application of the I-Codes.

Italicized Terms

Word and terms defined in Chapter 2, Definitions, are italicized where they appear in code text and the Chapter 2 definitions applies. Where such words and terms are not italicized, common-use definitions apply. The words and terms selected have code-specific definitions that the user should read carefully to facilitate better understanding of the code.

Adoption

The International Code Council maintains a copyright in all of its codes and standards. Maintaining copyright allows the ICC to fund its mission through sales of books, in both print and electronic formats. The ICC welcomes adoption of its codes by jurisdictions that recognize and acknowledge the ICC’s copyright in the code, and further acknowledge the substantial shared value of the public/private partnership for code development between jurisdictions and the ICC.

The ICC also recognizes the need for jurisdictions to make laws available to the public. All I-Codes and I-Standards, along with the laws of many jurisdictions, are available for free in a nondownloadable form on the ICC’s website. Jurisdictions should contact the ICC at adoptions@iccsafe.org to learn how to adopt and distribute laws based on the International Mechanical Code in a manner that provides necessary access, while maintaining the ICC’s copyright.
To facilitate adoption, several sections of this code contain blanks for fill-in information that needs to be supplied by the adopting jurisdiction as part of the adoption legislation. For this code, please see:

Section 101.1. Insert: [NAME OF JURISDICTION]

Section 106.5.2. Insert: [APPROPRIATE SCHEDULE]

Section 106.5.3. Insert: [PERCENTAGES IN TWO LOCATIONS]

Section 108.4. Insert: [OFFENSE, DOLLAR AMOUNT, NUMBER OF DAYS]

Section 108.5. Insert: [DOLLAR AMOUNT IN TWO LOCATIONS]
EFFECTIVE USE OF THE INTERNATIONAL MECHANICAL CODE

The International Mechanical Code® (IMC®) is a model code that regulates the design and installation of mechanical systems, appliances, appliance venting, duct and ventilation systems, combustion air provisions, hydronic systems and solar systems. The purpose of the code is to establish the minimum acceptable level of safety and to protect life and property from the potential dangers associated with the installation and operation of mechanical systems. The code also protects the personnel that install, maintain, service and replace the systems and appliances addressed by this code.

The IMC is primarily a prescriptive code with some performance text. The code relies heavily on product specifications and listings to provide much of the appliance and equipment installation requirements. The general Section 105.2 and the exception to Section 403.2 allow designs and installations to be performed by approved engineering methods as alternatives to the prescriptive methods in the code.

The format of the IMC allows each chapter to be devoted to a particular subject with the exception of Chapter 3, which contains general subject matters that are not extensive enough to warrant their own independent chapter.

Chapter 1 Scope and Administration. Chapter 1 establishes the limits of applicability of the code and describes how the code is to be applied and enforced. A mechanical code, like any other code, is intended to be adopted as a legally enforceable document and it cannot be effective without adequate provisions for its administration and enforcement. The provisions of Chapter 1 establish the authority and duties of the code official appointed by the jurisdiction having authority and also establish the rights and privileges of the design professional, contractor and property owner.

Chapter 2 Definitions. Chapter 2 is the repository of the definitions of terms used in the body of the code. Codes are technical documents and every word and term can impact the meaning of the code text and the intended results. The code often uses terms that have a unique meaning in the code and the code meaning can differ substantially from the ordinarily understood meaning of the term as used outside of the code.

The terms defined in Chapter 2 are deemed to be of prime importance in establishing the meaning and intent of the code text that uses the terms. The user of the code should be familiar with and consult this chapter because the definitions are essential to the correct interpretation of the code and because the user may not be aware that a term is defined.

Chapter 3 General Regulations. Chapter 3 contains broadly applicable requirements related to appliance location and installation, appliance and systems access, protection of structural elements, condensate disposal and clearances to combustibles, among others.

Chapter 4 Ventilation. Chapter 4 includes means for protecting building occupant health by controlling the quality of indoor air and protecting property from the effects of inadequate ventilation. In some cases, ventilation is required to prevent or reduce a health hazard by removing contaminants at their source.

Ventilation is both necessary and desirable for the control of air contaminants, moisture and temperature. Habitable and occupiable spaces are ventilated to promote a healthy and comfortable environment for the occupants. Uninhabited and unoccupied spaces are ventilated to protect the building structure from the harmful effects of excessive humidity and heat. Ventilation of specific occupancies is necessary to minimize the potential for toxic or otherwise harmful substances to reach dangerously high concentrations in air.
Chapter 5 Exhaust Systems. Chapter 5 provides guidelines for reasonable protection of life, property and health from the hazards associated with exhaust systems, air contaminants and smoke development in the event of a fire. In most cases, these hazards involve materials and gases that are flammable, explosive, toxic or otherwise hazardous. Where contaminants are known to be present in quantities that are irritating or harmful to the occupants’ health or are hazardous in a fire, both naturally and mechanically ventilated spaces must be equipped with mechanical exhaust systems capable of collecting and removing the contaminants.

This chapter contains requirements for the installation of exhaust systems, with an emphasis on the structural integrity of the systems and equipment involved and the overall impact of the systems on the fire safety performance of the building. It includes requirements for the exhaust of commercial kitchen grease- and smoke-laden air, hazardous fumes and toxic gases, clothes dryer moisture and heat and dust, stock and refuse materials.

Chapter 6 Duct Systems. Chapter 6 of the code regulates the materials and methods used for constructing and installing ducts, plenums, system controls, exhaust systems, fire protection systems and related components that affect the overall performance of a building’s air distribution system and the reasonable protection of life and property from the hazards associated with air-moving equipment and systems. This chapter contains requirements for the installation of supply, return and exhaust air systems. Specific exhaust systems are also addressed in Chapter 5. Information on the design of duct systems is limited to that in Section 603.2. The code is very much concerned with the structural integrity of the systems and the overall impact of the systems on the fire safety and life safety performance of the building. Design considerations such as duct sizing, maximum efficiency, cost effectiveness, occupant comfort and convenience are the responsibility of the design professional. The provisions for the protection of duct penetrations of wall, floor, ceiling and roof assemblies are extracted from the International Building Code.

Chapter 7 Combustion Air. Complete combustion of solid and liquid fuel is essential for the proper operation of appliances, for control of harmful emissions and for achieving maximum fuel efficiency.

The specific combustion air requirements provided in previous editions of the code have been deleted in favor of a single section that directs the user to NFPA 31 for oil-fired appliance combustion air requirements and the manufacturer’s installation instructions for solid-fuel burning appliances. For gas-fired appliances, the provisions of the International Fuel Gas Code are applicable.

Chapter 8 Chimneys and Vents. Chapter 8 is intended to regulate the design, construction, installation, maintenance, repair and approval of chimneys, vents and their connections to solid and liquid fuel-burning appliances. The requirements of this chapter are intended to achieve the complete removal of the products of combustion from fuel-burning appliances and equipment. This chapter includes regulations for the proper selection, design, construction and installation of a chimney or vent, along with appropriate measures to minimize the related potential fire hazards. A chimney or vent must be designed for the type of appliance or equipment it serves. Chimneys and vents are designed for specific applications depending on the flue gas temperatures and the type of fuel being burned in the appliance. Chimneys and vents for gas-fired appliances are covered in the International Fuel Gas Code.

Chapter 9 Specific Appliances, Fireplaces and Solid Fuel-burning Equipment. Chapter 9 sets minimum construction and performance criteria for fireplaces, appliances and equipment and provides for the safe installation of these items. It reflects the code’s intent to specifically address all of the types of appliances that the code intends to regulate. Other regulations affecting the installation of solid fuel-burning fireplaces, appliances and accessory appliances are found in Chapters 3, 6, 7, 8, 10, 11, 12, 13 and 14.
Chapter 10 Boilers, Water Heaters and Pressure Vessels. Chapter 10 presents regulations for the proper installation of boilers, water heaters and pressure vessels to protect life and property from the hazards associated with those appliances and vessels. It applies to all types of boilers and pressure vessels, regardless of size, heat input, operating pressure or operating temperature.

Because pressure vessels are closed containers designed to contain liquids, gases or both under pressure, they must be designed and installed to prevent structural failures that can result in extremely hazardous situations. Certain safety features are therefore provided in Chapter 10 to reduce the potential for explosion hazards.

Chapter 11 Refrigeration. Chapter 11 contains regulations pertaining to the life safety of building occupants. These regulations establish minimum requirements to achieve the proper design, construction, installation and operation of refrigeration systems. Refrigeration systems are a combination of interconnected components and piping assembled to form a closed circuit in which a refrigerant is circulated. The system’s function is to extract heat from a location or medium, and to reject that heat to a different location or medium. This chapter establishes reasonable safeguards for the occupants by defining and mandating practices that are consistent with the practices and experience of the industry.

Chapter 12 Hydronic Piping. Hydronic piping includes piping, fittings and valves used in building space conditioning systems. Applications include hot water, chilled water, steam, steam condensate, brines and water/antifreeze mixtures. Chapter 12 contains the provisions that govern the construction, installation, alteration and repair of all hydronic piping systems that affect reliability, serviceability, energy efficiency and safety.

Chapter 13 Fuel Oil Piping and Storage. Chapter 13 regulates the design and installation of fuel oil storage and piping systems. The regulations include reference to construction standards for above-ground and underground storage tanks, material standards for piping systems (both above-ground and underground) and extensive requirements for the proper assembly of system piping and components. The International Fire Code (IFC) covers subjects not addressed in detail here. The provisions in this chapter are intended to prevent fires, leaks and spills involving fuel oil storage and piping systems.

Chapter 14 Solar Thermal Systems. Chapter 14 establishes provisions for the safe installation, operation and repair of solar energy systems used for space heating or cooling, domestic hot water heating or processing. Although such systems use components similar to those of conventional mechanical equipment, many of these provisions are unique to solar energy systems.

Chapter 15 Referenced Standards. Chapter 15 lists all of the product and installation standards and codes that are referenced throughout Chapters 1 through 14. As stated in Section 102.8, these standards and codes become an enforceable part of the code (to the prescribed extent of the reference) as if printed in the body of the code. Chapter 15 provides the full title and edition year of the standards and codes in addition to the address of the promulgators and the section numbers in which the standards and codes are referenced.

Appendix A Chimney Connector Pass-throughs. Appendix A provides figures that illustrate various requirements in the body of the code. Figure A-1 illustrates the chimney connector clearance requirements of Table 803.10.4.

Appendix B Recommended Permit Fee Schedule. Appendix B provides a sample permit fee schedule for mechanical permits. The local jurisdiction can adopt this appendix and fill in the dollar amounts in the blank spaces to establish their official permit fee schedule. The ICC does not establish permit fees because the code is adopted throughout the country and there are vast differences in operating budgets between different parts of the country, as well as between large and small municipalities within the same region.
TABLE OF CONTENTS

CHAPTER 1 SCOPE AND ADMINISTRATION
PART 1—SCOPE AND APPLICATION 1
 - Section
 - 101 General 1
 - 102 Applicability 1
 - PART 2—ADMINISTRATION AND ENFORCEMENT 2
 - 103 Department of Mechanical Inspection 2
 - 104 Duties and Powers of the Code Official 2
 - 105 Approval 3
 - 106 Permits 3
 - 107 Inspections and Testing 5
 - 108 Violations 6
 - 109 Means of Appeal 7
 - 110 Temporary Equipment, Systems and Uses 8

CHAPTER 2 DEFINITIONS 9
Section
 - 201 General 9
 - 202 General Definitions 9

CHAPTER 3 GENERAL REGULATIONS 21
Section
 - 301 General 21
 - 302 Protection of Structure 22
 - 303 Equipment and Appliance Location 23
 - 304 Installation 23
 - 305 Piping Support 25
 - 306 Access and Service Space 25
 - 307 Condensate Disposal 27
 - 308 Clearance Reduction 28
 - 309 Temperature Control 29
 - 310 Explosion Control 29
 - 311 Smoke and Heat Vents 29
 - 312 Heating and Cooling Load Calculations 29

CHAPTER 4 VENTILATION 31
Section
 - 401 General 31
 - 402 Natural Ventilation 31
 - 403 Mechanical Ventilation 32
 - 404 Enclosed Parking Garages 35
 - 405 Systems Control 35
 - 406 Ventilation of Uninhabited Spaces 35
 - 407 Ambulatory Care Facilities and Group I-2 Occupancies 35

CHAPTER 5 EXHAUST SYSTEMS 41
Section
 - 501 General 41
 - 502 Required Systems 42
 - 503 Motors and Fans 49
 - 504 Clothes Dryer Exhaust 49
 - 505 Domestic Cooking Exhaust Equipment 51
 - 506 Commercial Kitchen Hood Ventilation
 - System Ducts and Exhaust Equipment 51
 - 507 Commercial Kitchen Hoods 56
 - 508 Commercial Kitchen Makeup Air 59
 - 509 Fire Suppression Systems 60
 - 510 Hazardous Exhaust Systems 60
 - 511 Dust, Stock and Refuse Conveying Systems 62
 - 512 Subslab Soil Exhaust Systems 63
 - 513 Smoke Control Systems 63
 - 514 Energy Recovery Ventilation Systems 67

CHAPTER 6 DUCT SYSTEMS 69
Section
 - 601 General 69
 - 602 Plenums 70
 - 603 Duct Construction and Installation 72
 - 604 Insulation 74
 - 605 Air Filters 75
 - 606 Smoke Detection Systems Control 75
 - 607 Duct and Transfer Openings 76

CHAPTER 7 COMBUSTION AIR 81
Section
 - 701 General 81

CHAPTER 8 CHIMNEYS AND VENTS 83
Section
 - 801 General 83
TABLE OF CONTENTS

802 Vents .. 84
803 Connectors 85
804 Direct-vent, Integral Vent and Mechanical Draft Systems 86
805 Factory-built Chimneys 87
806 Metal Chimneys 88

CHAPTER 9 SPECIFIC APPLIANCES,
FIREPLACES AND SOLID FUEL-BURNING EQUIPMENT 89
Section
901 General ... 89
902 Masonry Fireplaces 89
903 Factory-built Fireplaces 89
904 Pellet Fuel-burning Appliances 89
905 Fireplace Stoves and Room Heaters 89
906 Factory-built Barbecue Appliances 89
907 Incinerators and Crematories 90
908 Cooling Towers, Evaporative Condensers and Fluid Coolers 90
909 Vented Wall Furnaces 90
910 Floor Furnaces 90
911 Duct Furnaces 91
912 Infrared Radiant Heaters 91
913 Clothes Dryers 91
914 Sauna Heaters 91
915 Engine and Gas Turbine-powered Equipment and Appliances 91
916 Pool and Spa Heaters 91
917 Cooking Appliances 92
918 Forced-air Warm-air Furnaces 92
919 Conversion Burners 92
920 Unit Heaters 92
921 Vented Room Heaters 92
922 Kerosene and Oil-fired Stoves 92
923 Small Ceramic Kilns 92
924 Stationary Fuel Cell Power Systems 92
925 Masonry Heaters 92
926 Gaseous Hydrogen Systems 93
927 Radiant Heating Systems 93
928 Evaporative Cooling Equipment 93
929 High-volume Large-diameter Fans 93

CHAPTER 10 BOILERS, WATER HEATERS
AND PRESSURE VESSELS 95
Section
1001 General .. 95
1002 Water Heaters 95
1003 Pressure Vessels 95
1004 Boilers .. 95
1005 Boiler Connections 96
1006 Safety and Pressure Relief Valves and Controls 96
1007 Boiler Low-water Cutoff 97
1008 Bottom Blowoff Valve 97
1009 Hot Water Boiler Expansion Tank 97
1010 Gauges .. 98
1011 Tests ... 98

CHAPTER 11 REFRIGERATION 99
Section
1101 General .. 99
1102 System Requirements 99
1103 Refrigeration System Classification 100
1104 System Application Requirements 106
1105 Machinery Room, General Requirements 107
1106 Machinery Room, Special Requirements 108
1107 Refrigerant Piping 109
1108 Field Test 110
1109 Periodic Testing 111

CHAPTER 12 HYDRONIC PIPING 113
Section
1201 General .. 113
1202 Material .. 113
1203 Joints and Connections 114
1204 Pipe Insulation 116
1205 Valves ... 116
1206 Piping Installation 116
1207 Transfer Fluid 117
1208 Tests .. 117
1209 Embedded Piping 117
1210 Plastic Pipe Ground-source Heat Pump Loop Systems 117

CHAPTER 13 FUEL OIL PIPING
AND STORAGE 121
Section
1301 General .. 121
1302 Material .. 121
1303 Joints and Connections 121
1304 Piping Support 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1305</td>
<td>Fuel Oil System Installation</td>
<td>122</td>
</tr>
<tr>
<td>1306</td>
<td>Oil Gauging</td>
<td>123</td>
</tr>
<tr>
<td>1307</td>
<td>Fuel Oil Valves</td>
<td>123</td>
</tr>
<tr>
<td>1308</td>
<td>Testing</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 14 SOLAR THERMAL SYSTEMS</td>
<td>125</td>
</tr>
<tr>
<td>1401</td>
<td>General</td>
<td>125</td>
</tr>
<tr>
<td>1402</td>
<td>Design and Installation</td>
<td>125</td>
</tr>
<tr>
<td>1403</td>
<td>Heat Transfer Fluids</td>
<td>127</td>
</tr>
<tr>
<td>1404</td>
<td>Labeling</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 15 REFERENCED STANDARDS</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A CHIMNEY CONNECTOR PASS-THROUGHS</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B RECOMMENDED PERMIT FEE SCHEDULE</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>147</td>
</tr>
</tbody>
</table>