
ALTERNATIVE ENERGY: SOURCES AND SYSTEMS

۲

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

۲

ELMAR OUT FOR Sale

Alternative Energy: Sources and Systems Donald Steeby

Vice President, Editorial: Gregory L. Clayton Director of Building Trades: Taryn Zlatin McKenzie Executive Editor: Robert Person Product Manager: Vanessa L. Myers Editorial Assistant: Nobina Preston Marketing Director: Beth A. Lutz Marketing Manager: Marissa Maiella Marketing Coordinator: Rachael Torres Production Manager: Sherondra N. Thedford Senior Content Project Manager: Stacey Lamodi

Senior Art Director: Benjamin Gleeksman

© 2012 Delmar, Cengage Learning

۲

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions**. Further permissions questions can be e-mailed to **permissionrequest@cengage.com**.

Library of Congress Control Number: 2011921378

ISBN-13: 978-1-111-03726-0 ISBN-10: 1-111-03726-4

Delmar

5 Maxwell Drive Clifton Park, NY 12065-2919 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: **international.cengage.com/region**

Cengage Learning products are represented in Canada by Nelson Education, Ltd. For more learning solutions, please visit our corporate website at www.cengage.com Visit us at www.lnformationDestination.com

NOTICE TO THE READER

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers' use of, or reliance upon, this material.

Printed in the United States of America 1 2 3 4 5 6 7 14 13 12 11

 \bigcirc

DEDICATION

۲

To my wife, Diane, for being the love of my life, my constant inspiration, and for believing in me through all these years.

۲

Not For Sale

۲

Ш

۲

ACKNOWLEDGMENTS

 \mathbb{N}

۲

I would like to thank the following people who helped make this book possible: To my wife Diane, daughter Erin, and brother Jerry for their contributions; to Mike Feutz, Ph.D., Ferris State University, for writing the Foreword and helping me review my subject matter; to Amy Kavanaugh, Ph.D., Ferris State University, for getting me through my master's degree; to Geoff Moffat for helping me with zoning issues; to Mitch LeClaire and Mike Lafferty for getting me interested in geothermal; as well as the following people and organizations for their support, inspiration, and contributions:

Charles Lacy, Ph.D.; Mary Bigelow; Dave and Sharon Kaechele; Gary and Lois Vanduine; Ryan and Bill Martin; Clayton and Amanda Jackson; Rob Rafson, P.E.; Jeanette Hagen; Tom Lane; Mick Sagrillo; Torresen Marine; Caleffi Hydronic Solutions; John Deere Renewables; and Solar Energy International.

FOREWORD

I first heard of Don Steeby when I began teaching at Ferris State University in 1998. He was the student, I was told, who wrote a software program that our students used to size ground loops for geothermal heat pump systems. His software was successful enough to sell in the market, but it also played a significant role at Ferris. Students in the Heating, Ventilation, and Air Conditioning (HVAC) Engineering Technology program used his software to size ground loops as part of their first-place submissions in a number of international mechanical system selection and design competitions sponsored annually by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). As you will see, this book is similar to the software that Don wrote. Both are symbolic of his background and career: technical yet down to earth. Don draws on his experiences in life, from the mechanical know-how and connection he made with the environment as a farm boy, to the technical expertise he gained in the HVAC industry and the education he received from a community college and two universities.

Growing up on a dairy farm in west Michigan taught Don to be self-dependent, as his family usually fixed things themselves. Don was milking cows by the time he was 10 and learned about machinery first hand as a young boy, when he found he liked to take things apart to find out how they worked. His interest in agriculture led him to the Institute of Agricultural Technology at Michigan State University. After graduating in 1980, Don found a poor farming economy and turned to other jobs. While working as an electrician he decided that the skilled trades suited him well, so he returned to school part time in the fall of 1985, enrolling in the HVAC program at Grand Rapids Community College. By the time he graduated with his associate degree in 1992, Don had worked his way up to national sales manager, selling gas direct-fired make-up air units for a subsidiary of Rapid Engineering.

Though he had established a successful career, Don wanted to learn more. In the fall of 1994, with a wife, two kids, and a mortgage, he quit his job and went back to school full time to earn his bachelor's degree in HVAC Engineering Technology from Ferris State University. It was at Ferris where Don's passion for learning and down-on-the-farm know-how prompted two of his professors to ask him to write the geothermal software. Upon graduation, his new degree led to a position with the Honeywell Corporation. Controls engineers are called upon to solve complex problems and do so by combining systems thinking with systematic troubleshooting techniques. Because they must know all aspects of countless types of mechanical systems from both the design and operation perspectives, the good ones are among the most knowledge people in the HVAC industry. Don was one of the good ones and moved up through the ranks.

While he was with Honeywell, I asked Don to teach as an adjunct for us at Ferris State. He accepted the new challenge eagerly. He did so well that in 2002, his students won the same ASHRAE international HVAC system design competition that his software had helped other students win in earlier years. Teaching sparked a

Not For Sale

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

۲

 (\bullet)

 \vee

۲

new interest for Don. In fact, we tried to hire him as a full-time instructor, but he turned us down. Though teaching at his alma mater represented a tempting opportunity, the campus was too far of a drive and strong ties to his community and the family farm did not allow him to consider relocating.

Don also taught as an adjunct at Grand Rapids Community College, another of his alma maters, and located much closer to his home. When a full-time position became available in 2007, he jumped at the opportunity. It was no surprise to me when he was selected as the successful candidate and left a promising job in the HVAC industry to begin a new chapter in his career. True to form, Don took the next step in his education with his new career, and I had the pleasure of serving on his thesis committee when he earned his Master's of Science in Career and Technical Education from Ferris State University in the spring of 2010.

This book is an extension of the research Don completed for his thesis. Much of what you read is a collection of the knowledge that he acquired through his graduate work. But it is more than that. It is a statement of his passion for alternate energy, for learning, and for sharing knowledge. I am reminded of Armstrong International, a family-owned American manufacturer of high-quality products for the steam, air, and hot water industries. Armstrong operates by the motto, "knowledge not shared is energy wasted." That motto has multiple meanings when applied to this book. The energy sources that Don writes of are available and abundant, but like the knowledge in the Armstrong motto, are largely wasted until we deploy methods to harvest them. And the work that Don has done to compile information about the various forms and uses of alternate energy would be wasted if he did not share the knowledge he has gained with you.

This book, written in an easy-to-understand manner, serves as a primer for those who wish to learn about energy alternatives and applications. What follows is a comprehensive work, as Don provides practical, historical, and technical perspectives, allowing the reader to learn about all aspects of each form of alternative energy solutions. This is not an engineering text. It is a thorough introduction to and discussion of solar, wind, geothermal, biomass, and future energy sources (fuel cells and combined heat and power [CHP] systems). Without additional training and/or expertise, the reader should not expect to be prepared to design, install, or maintain an alternative energy system. But the reader will come away with a better understanding of the background, application, feasibility, economics, efficiency, and technology behind these five energy sources.

Don has gone beyond his goal to "outline the fundamental workings of various types of alternative energy equipment and show how these types of equipment are applied, installed, serviced, and maintained for today's marketplace." He has infused his passion and expertise into the pages that follow. From his farm boy know-how to his master's degree in career and technical education, Don has created a resource that you will find informative, practical, and useful.

Michael J. Feutz, Ph.D., LEED AP Professor, HVAC Ferris State University

 (\blacklozenge)

TABLE OF CONTENTS

Acknowledgments	ÍV
Foreword	V
Preface	xiii
UNIT I: Solar Energy: Harnessing the Sun's Power	1
Chapter 1: INTRODUCTION TO SOLAR ENERGY	3
A Brief History of Solar Thermal Systems	5
The Feasibility of Solar Thermal Systems	8
Regional Factors	9
Site-Specific Factors	11
Economics and Performance of Solar Thermal Systems	12
Certification and Testing of Solar Collectors and Systems	14
Chapter 2: HOW THERMAL STORAGE WORKS	17
Passive Systems	17
Integral Collector Storage Unit (ICS)	18
Thermosyphon Systems	19
Active Systems	21
Open-Loop Systems	23
Closed-Loop Systems	24
Drainback Systems	25
Pressurized and Unpressurized Systems	26
Solar Collectors	27
Flat-Plate Collectors	28
Evacuated-Tube Collectors	29
Chapter 3: APPLICATIONS FOR SOLAR THERMAL STORAGE	33
Solar Thermal System Installation	34
Solar Angles	34
Solar Collector Panel Positioning	35
Mounting the Solar Panel	37
System Piping	40
Expansion Tank	40
Air Vents and Air Separators	42
Pressure-Relief Valves	44
Freeze-Protection Valves	44
Check Valves	45
Pressure and Temperature Gauges	46
Control Strategies for Solar Thermal Systems	47

Not For Sale

۲

۲

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

۲

۲

Filling and Starting Up the System	50
Cleaning and Flushing the System	51
Charging the System	51
Various Applications for Solar Thermal Systems	52
Swimming Pools	52
Hot Tubs and Spas	54
Space Heating	54
Radiant Solar Heating	55
Forced-Air Systems	57
Solar Cooling Applications	58
Chapter 4: HOW PHOTOVOLTAIC PANELS WORK	63
Solar Photovoltaics on an Atomic Level	64
Photovoltaics and Electric Principles	66
Electrical Terminology	66
Types of Electrical Current	67
Photovoltaic Electrical Circuits	68
Series and Parallel Circuits for Power Supplies	69
Series and Parallel Circuits for Electrical Loads	70
Photovoltaic Components	71
PV Batteries	72
PV Controllers	74
PV Inverters	76
Chapter 5: APPLICATIONS FOR PHOTOVOLTAIC SOLAR PANELS	79
Photovoltaic System Configurations	79
Grid-Connected Photovoltaic Systems	80
Stand-Alone Photovoltaic Systems	81
Utilizing Solar Resources	83
Site Analysis	85
Load Analysis	87
Photovoltaic System Wiring	88
Wire Types	89
Cables and Conduit	90
Wire Sizing	91
Over-Current Protection	92
Grounding Requirements	94
Installing Photovoltaic Systems	96
Site Evaluation	96
Mounting the PV Modules	96
Battery and Inverter Installation	100
System Wiring	100
Putting It All Together—A Review	102
Maintenance of the PV System	102

۲

۲

UNIT II: Wind Energy: Setting Sail for a New Power Alternative	107
Chapter 6: INTRODUCTION TO WIND ENERGY	109
A Brief History of Wind Power	109
How a Wind Turbine Works	112
Different Types of Wind Turbines	116
Horizontal-Axis Wind Turbines	116
Vertical-Axis Wind Turbines	119
Chapter 7: CONSIDERATIONS FOR CHOOSING A WIND TURBINE	121
Model Selection	121
Rotor Diameter and Sweep Area	122
Tower-Top Turbine Weight	123
Cut-in Wind Speed	124
Rated Wind Speed	124
Rated Output	124
Peak Output	125
Annual Energy Output	125
RPM at Rated Output	125
Generator Type	126
Governing System	126
Shut-Down Mechanism	127
Controls	127
Warranty	127
Wind Quantity Considerations	128
Zoning Considerations	130
Correct Sizing	132
Connecting to the Local Utility Grid	132
Basic Grid Connection	132
Grid-Connected Wind Turbine with Battery Backup	134
Connecting a Wind Turbine and Backup Generator	136
Following the National Electric Code	137
Installation and Maintenance Issues	137
Installing the Tower	138
Performing Routine Maintenance	140
Chapter 8: INTRODUCTION TO LARGE-SCALE TURBINES	143
The Anatomy of a Large-Scale Wind Turbine	144
Integral Controls	146
Analog Points	147
Digital Points	147
Proper Site Selection	148
Roughness of the Terrain	148
Wind Conditions and Wind Shear	148
Wind Obstacles	150

Not For Sale

۲

00000_00_FM_pi-xii.indd ix

03/06/11 1:08 PM

۲

۲

Construction and Installation	150
Electrical Connections	152
Safety Practices for Large-Scale Wind Turbines	153
Wind Turbine Maintenance	155
Scheduled Maintenance	155
Alignment Issues	156
Grid Connections	157
Gearbox Maintenance	157
UNIT III: Geothermal: Using the Earth to Heat and Cool Our World	161
Chapter 9: HOW A GEOTHERMAL SYSTEM WORKS	163
The Geothermal Refrigeration System	165
The Compressor	165
The Condenser	169
The Metering Device	171
The Evaporator	174
The Four-Way Reversing Valve	175
Chapter 10: TYPES AND CONFIGURATIONS	
OF GEOTHERMAL LOOPS	177
Open-Loop Water Quality Considerations	178
Determining Proper Water Quantity in the Open-Loop Well	180
Open-Loop Configurations	183
Conventional Drilled Well	184

Determining Proper Water Quantity in the Open-Loop Well	180
Open-Loop Configurations	183
Conventional Drilled Well	184
Utilizing a Return Well	184
Standing Column	185
Dry Well Systems	186
Pressure Tanks	187
Closed-Loop Configurations	188
Vertical Loops	188
Horizontal Loops	190
Slinky Loops	193
Pond Loops	194
Domestic Hot Water Loop	196

Chapter 11: PROPER SIZING PROCEDURES	
FOR GEOTHERMAL APPLICATIONS	199
Load Calculations	199
Heat Loss Calculations	199
Transmission Losses	202
Infiltration Losses	204
Ventilation Losses	206
Duct Losses	207
Heat Gain Calculation	207
Calculating Solar Gain	208

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

۲

۲

Calculating Internal Gains	209
Calculating Latent Heat Gains	209
Duct Sizing	210
Air Distribution Systems	211
Calculating CFM Values	212
Select and Locate Air Distribution Devices	213
Sizing Ductwork	214
Calculate System Pressure Losses	215
Equipment Selection	216
Loop Sizing	218
Chapter 12: INSTALLATION AND START-UP	
OF GEOTHERMAL SYSTEMS	221
Installation Practices	221
Accessibility and Location	221
Duct Connections	221
Electrical Connections	223
Drain Connections	223
Ground Loop Connections	224
System Airflow	227
Refrigeration Considerations	227
Start-up Procedures	229
Start-up Procedure Checklist	230
Additional Geothermal Heat Pump Applications	230
Water-to-Water Heat Pumps	231
UNIT IV: Biomass: Utilizing Wood, Corn,	
and Pellets as Heating Fuels	235
Chapter 13: USING BIOMASS AS A HEATING SOURCE	237
Introduction	237
Sources of Biomass for Heat	237
Wood Characteristics	238
Characteristics of Corn	241
Wood Pellets	242
Miscellaneous Sources of Heat	245
Chapter 14: APPLICATIONS FOR BIOMASS BURNERS	247
Different Types of Installations	247
Wood, Corn, and Pellet Stoves	247
Stove Combustion Design	249
Catalytic and Noncatalytic Stoves	250
Corn and Pellet Stoves	251
Installation	252
Clearances	253
The Stovepipe	253
Not For Sale	

۲

CONTENTS	
Not For Sale	
The Chimney	254
Masonry Chimneys	255
Stove Safety	256
Stove Maintenance	256
Outdoor Boilers	257
Installation of Outdoor Boilers	257
Sizing the Boiler	259
Setting the Boiler	259
Piping Installation	260
Wiring and Controls	262
Additional Applications	263
Boiler Maintenance	265
Indoor Boilers and Furnaces	265
Multi-fuel Furnaces for Primary Use	266
Add-on Furnaces	266
UNIT V: Future Energy Sources: A Look at Fuel Cells	
and CHP (Combined Heat and Power)	271
Chapter 15: HOW FUEL CELLS WORK	273
Introduction	273
What Is a Fuel Cell?	273
Fuel Cell Composition	274
How a Fuel Cell Works	275
Advantages of Fuel Cells	276
Applications	276
Fuel Cell Installation	278
Costs	280
Fuel Cell Maintenance	281
Looking to the Future with Fuel Cells	282
Chapter 16: WHAT IS CHP?	283
Introduction	283
History of CHP	283
CHP Applications	284
CHP Controls	286
Design Guidelines	288
Installation Practices	289
Choosing an Installation Site	289
Making the Proper Electrical Connection	289
Performing the Waste Heat Interconnection	291
Connecting to a Backup Heating System	293
System Costs	294
Payback on Investment	295
Maintenance of CHP Systems	295
Glossary	297
Index	305

۲

۲

PREFACE

The dictionary defines the word energy as "any source of useable power" and the words alternative energy as "energy that can replace or supplement traditional fossil fuel sources." Traditional energy sources such as electricity, natural gas, and fuel oil have been reliable life-sources in society that have created lighting for work, heating for homes, and have made the world a more comfortable place. Today, however, with traditional energy in short supply and in great demand, it is understandable that there is a desire to find alternative sources that will meet the growing needs of our society. The intent of this book is to not only assist the reader in developing a deeper understanding of alternative energy, but also to assist in satisfying the demand and desire for new reference material that has been created by the nation's thirst for clean, abundant energy. The purpose of this book is to enhance the development of practical applications for alternative energy and its equipment within the climate-control industry. There are numerous HVAC installation and service companies throughout the United States who are interested in entering into the alternative energy market. In order to be prepared for this market, these companies will require that their personnel be properly trained in areas of alternative energy in order to become competent and qualified technicians. This book will fill a void that currently exists between basic information on alternative energy and the higher level, more intellectual material that is suited toward the engineering and development of alternative energy systems.

The usage of this book is directed toward the following entities: HVAC contractors and energy contractors who are seeking to educate their workforce in the ways of alternative energy, students who wish to further their education in the use of alternative energy systems, and homeowners and business owners who are seeking alternative ways in which to reduce their energy costs. There is a real need for a comprehensive book that bridges the void between the simplistic, do-it-yourself type manual and the graduate level engineer textbook that tends to focus on the development and analysis of these types of systems. The research that was compiled for the development of this book has resulted in an in-depth study of how these types of systems operate, how they should be properly applied and installed, and how they should be maintained.

The public's desire to develop and utilize sources of alternative energy in the United States will continue to escalate throughout the next several years and beyond. Because of this demand, there will be a perpetual need for trained and qualified technicians who have the ability to understand how to install, commission, service, and repair alternative energy equipment. In order to prepare these technicians, there will be a need for comprehensive information that can be used to train and educate installers, technicians, and service people. Although there is an abundance of individual sources of information regarding alternative energy currently available, there is a need for reference literature that can compile and

Not For Sale

 \bigcirc

۲

 $\times \parallel \mid$

organize this information into a useable reference book that will meet the needs of today's students, technicians, and building owners.

The use of alternative energy is going to be around for a while. This is not a passing phase. Vast amounts of time and money have been spent investing in the future of alternative energy, and it is very apparent that it will be a viable source for powering America long into the future.

۲