Design of Wood Structures —ASD/LRFD

Donald E. Breyer, P.E.

Professor Emeritus Department of Engineering Technology California State Polytechnic University Pomona, California

Kelly E. Cobeen, S.E.

Associate Principal Wiss, Janney, Elstner Associates, Inc. Emeryville, California

Kenneth J. Fridley, Ph.D.

Professor and Head Department of Civil, Construction, and Environmental Engineering University of Alabama Tuscaloosa, Alabama

David G. Pollock, Ph.D., P.E.

Professor
Department of Mechanical and Civil Engineering
George Fox University
Newberg, Oregon

Seventh Edition

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto McGraw-Hill Education books are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Design of Wood Structures—ASD/LRFD, Seventh Edition

Copyright © 2015, 2007, 2003, 1998, 1993, 1988, 1980 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

 $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 0\quad DOC/DOC\quad 1\ 2\ 0\ 9\ 8\ 7\ 6\ 5\ 4$

ISBN 978-0-07-174560-4 MHID 0-07-174560-2

This book is printed on acid-free paper.

Sponsoring Editor Bridget L. Thoreson

Editing Supervisor Stephen M. Smith

Production Supervisor Pamela A. Pelton

Project Manager Kritika Kaushik, Cenveo® Publisher Services

Copy Editor

Anshu Sinha, Cenveo Publisher Services

Proofreader Barnali Ojha

Indexer Cenveo Publisher Services

Art Director, Cover

Jeff Weeks

Composition

Cenveo Publisher Services

Information contained in this work has been obtained by McGraw-Hill Education from sources believed to be reliable. However, neither McGraw-Hill Education nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill Education nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill Education and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Contents

Preface xi Nomenclature xv Abbreviations xviii

Chapter	1. Wood Buildings and Design Criteria	1
1.1	Introduction	1
1.2	Types of Buildings	2
1.3	Required and Recommended References	4
1.4	Building Codes and Design Criteria	7
1.5	ASD and LRFD	8
1.6	Organization of the Text	9
1.7	Structural Calculations	9
1.8	Detailing Conventions	11
1.9	Fire-Resistive Requirements	12
1.10	Industry Organizations	13
1.11	References	13
Chapter	2. Design Loads	15
2.1	Introduction	15
2.2	Dead Loads	17
2.3	Live Loads	21
2.4	Snow Loads	28
2.5	Soil Loads and Hydrostatic Pressure	35
2.6	Loads due to Fluids	35
2.7	Rain Loads	35
2.8	Flood Loads	36
2.9	Self-Straining Loads	36
2.10	Wind Loads—Introduction	37
2.11	Wind Forces—Main Wind Force Resisting System	42
2.12	Wind Forces—Components and Cladding	52
2.13	Seismic Forces—Introduction	57
2.14	Seismic Forces	62
2.15	Seismic Forces—Primary System	76
2.16	Seismic Forces—Wall Components	83

vi Contents

2.17	Load Combinations	88
2.18	Serviceability/Deflection Criteria	93
2.19	References	98
2.20	Problems	99
Chapter	3. Behavior of Structures under Loads and Forces	107
3.1	Introduction	107
3.2	Structures Subject to Vertical Loads	107
3.3	Structures Subject to Lateral Forces	111
3.4	Lateral Forces in Buildings with Diaphragms and Shearwalls	118
3.5	Design Problem: Lateral Forces on One-Story Building	124
3.6	Design Problem: Lateral Forces on Two-Story Building	139
3.7	References	159
3.8	Problems	159
Chapter	4. Properties of Wood and Lumber Grades	167
4.1	Introduction	167
4.2	Design Specification	168
4.3	Methods of Grading Structural Lumber	170
4.4	In-Grade versus Clear Wood Design Values	172
4.5	Species and Species Groups	174
4.6	Cellular Makeup	175
4.7	Moisture Content and Shrinkage	178
4.8	Effect of Moisture Content on Lumber Sizes	186
4.9	Durability of Wood and the Need for Pressure Treatment	186
4.10	Growth Characteristics of Wood	189
4.11	Sizes of Structural Lumber	192
4.12	Size Categories and Commercial Grades	195
4.13	General Notation	199
4.14	Wet Service Factor C _M	205
4.15	Load Duration Factor C _D (ASD Only)	206
4.16	Time Effect Factor λ (LRFD Only)	210
4.17	Size Factor C _F	211
4.18	Repetitive Member Factor C _r	212
4.19	Flat Use Factor C _{fu}	213
4.20	Temperature Factor C _t	213
4.21	Incising Factor C _i	214
4.22	Resistance Factor ϕ (LRFD Only)	214
4.23	Format Conversion Factor K _F (LRFD Only)	215
4.24	Design Problem: Adjusted Design Values	216
4.25	Future Directions in Wood Design	226
4.26	References	227
4.27	Problems	228
Chapter	5. Structural Glued Laminated Timber	235
5.1	Introduction	235
5.2	Sizes of Glulam Members	235
5.3	Resawn Glulam	238
5.4	Fabrication of Glulams	239

		Contents	vii
5.5			245
	Adjustment Factors for Glulam		250
5.7	Design Problem: Adjusted Design Values		253
	References		257
5.9	Problems		258
Chapte	r 6. Beam Design		261
6.1	Introduction		261
6.2	Bending		262
6.3	Lateral Stability		274
6.4	Adjusted Bending Design Value Summary		283
6.5	Shear		289
6.6	Deflection		296
6.7	Design Summary		298
6.8	Bearing at Supports		300
6.9	Design Problem: Sawn Beam		307
6.10	Design Problem: Rough-Sawn Beam Using ASD		314
6.11			316
6.12	Design Problem: Sawn-Beam Analysis		318
6.13	,		322
6.14	Design Problem: Glulam Beam with Lateral Support at 8 ft-0 in.		328
	Design Problem: Glulam Beam with Lateral Support at 48 ft-0 in.		332
	Design Problem: Glulam with Compression Zone Stressed in Tension	1	335
	Cantilever Beam Systems	-	339
	Lumber Roof and Floor Decking		343
	Fabricated Wood Components		345
	References		354
	Problems		355
Chapte	r 7. Axial Forces and Combined Bending and Axial Forces		367
-	Introduction		367
	Axial Tension Members		368
			373
	Design Problem: Tension Member Columns		373
			_
	Detailed Analysis of Slenderness Ratio Design Problem: Axially Loaded Column		385
			391
7.7	Design Problem: Capacity of a Bearing Wall		396
			402
7.9	·		404
7.10	G		408
7.11	3		413
7.12	· ·		418
7.13	•		425
7.14	· ·		430
7.15			439
7.16	,		446
7.17	3		447
7.18			453
7.19	Problems		454

Chapter	8. Wood Structural Panels	463
8.1	Introduction	463
8.2	Panel Dimensions and Installation Recommendations	465
8.3	Plywood Makeup	467
8.4	Species Groups for Plywood	470
8.5	Veneer Grades	473
8.6	Exposure Durability Classifications	475
8.7	Plywood Grades	476
8.8	Other Wood Structural Panels	479
	Roof Sheathing	482
	Design Problem: Roof Sheathing	485
	Floor Sheathing	489
	Design Problem: Floor Sheathing	492
	Wall Sheathing and Siding	494
_	Stress Calculations for Wood Structural Panels	498
	References	508
8.16	Problems	509
Chapter	9. Diaphragms	513
9.1	Introduction	513
9.2	Basic Diaphragm Action	514
9.3	Shear Resistance	519
9.4	Diaphragm Chords	527
9.5	Design Problem: Roof Diaphragm	532
9.6	Distribution of Lateral Forces in a Shearwall	540
9.7	Collector (Strut) Forces	544
9.8	Diaphragm Deflections	549
	Diaphragms with Interior Shearwalls	554
	Interior Shearwalls with Collectors	559
	Diaphragm Flexibility	563
	References	566
9.13	Problems	566
Chapter	10. Shearwalls	573
10.1	Introduction	573
10.2	Basic Shearwall Action	574
10.3	Shearwalls Using Wood Structural Panels	575
10.4	Other Sheathing Materials	581
	Shearwall Chord Members	583
10.6	Design Problem: Shearwall	585
10.7	•	594
	Anchorage Considerations	605
	Vertical (Gravity) Loads	606
	Lateral Forces Parallel to a Wall	607
10.11		611
10.12	•	616
10.13		618
10.14	Problems	619

		Contents	IX
Chapter	11. Wood Connections—Background		627
11.1	Introduction		627
11.1	Types of Fasteners and Connections		627
	Yield Model for Laterally Loaded Fasteners		634
	Factors Affecting Strength in Yield Model		635
	Dowel Bearing Strength		639
	Plastic Hinge in Fastener		643
	Yield Limit Mechanisms		647
	References		652
•	Problems		652
Chapter	12. Nailed and Stapled Connections		655
12.1	Introduction		655
	Types of Nails		656
	Power-Driven Nails and Staples		659
	Yield Limit Equations for Nails		661
12.5	Applications of Yield Limit Equations		668
	Adjustment Factors for Laterally Loaded Nails		676
	Design Problem: Nail Connection for Knee Brace		683
12.8	Design Problem: Top Plate Splice		688
12.9	Design Problem: Shearwall Chord Tie		696
12.10	Design Problem: Laterally Loaded Toenail		700
12.11	Design Problem: Laterally Loaded Connection in End Grain		704
	Nail Withdrawal Connections		704
	Combined Lateral and Withdrawal Loads		713
-	Spacing Requirements		714
	Nailing Schedule		718
	References		718
-	Problems		718
12.17	Fiduleilis		7 10
Chapter	13. Bolts, Lag Bolts, and Other Connectors		727
13.1	Introduction		727
_	Bolt Connections		728
	Bolt Yield Limit Equations for Single Shear		731
	Bolt Yield Limit Equations for Double Shear		740
	Adjustment Factors for Bolts		744
13.6	Tension and Shear Stresses at a Multiple Fastener Connection		756
13.7	Design Problem: Multiple-Bolt Tension Connection		760
13.8	Design Problem: Bolted Chord Splice for Diaphragm		766
13.9	Shear Stresses in a Beam at a Connection		773
13.10	Design Problem: Bolt Connection for Diagonal Brace		775
13.11	Lag Bolt Connections		781
13.12	Yield Limit Equations for Lag Bolts		785
13.13	Adjustment Factors for Lag Bolts in Shear Connections		788
13.14	Design Problem: Collector (Strut) Splice with Lag Bolts		793
13.15	Lag Bolts in Withdrawal		799
13.16	Combined Lateral and Withdrawal Loads		802
13.17	Split Ring and Shear Plate Connectors		803

x Contents

13.18	References	809
13.19	Problems	809
Chapter	14. Connection Details and Hardware	821
14.1	Introduction	821
14.2	Connection Details	821
14.3	Design Problem: Beam-to-Column Connection	839
14.4	Cantilever Beam Hinge Connection	848
14.5	Prefabricated Connection Hardware	850
14.6	References	853
Chapter	15. Diaphragm-to-Shearwall Anchorage	855
15.1	Introduction	855
15.2	Anchorage Summary	855
15.3	Connection Details—Diaphragm to Wood-Frame Wall	860
15.4	Connection Details—Diaphragm to Concrete or Masonry Walls	869
15.5	Subdiaphragm Anchorage of Concrete and Masonry Walls	885
15.6	Design Problem: Subdiaphragm	891
15.7	References	899
Chapter	16. Advanced Topics in Lateral Force Design	901
16.1	Introduction	901
16.2	Seismic Forces—Regular Structures	901
16.3	Seismic Forces—Irregular Structures	903
16.4	Overturning—Background	914
16.5	Overturning—Review	914
16.6	Overturning—Wind	919
16.7	Overturning—Seismic	923
16.8	Lateral Analysis of Nonrectangular Buildings	929
16.9	Rigid Diaphragm Analysis	934
16.10	Additional Topics in Diaphragm Design	944
16.11	References	944
Appendi	x A. Equivalent Uniform Weights of Wood Framing	945
Appendi	x B. Weights of Building Materials	947
Appendi	x C. SI Units	951

Preface

The purpose of this book is to introduce engineers, technologists, and architects to the design of wood structures. It is intended to serve either as a text for a course in timber design or as a reference for systematic self-study of the subject.

The book will lead the reader through the complete design of a wood structure (except for the foundation). The sequence of the material follows the same general order that it would in actual design:

- 1. Vertical design loads and lateral forces
- 2. Design for vertical loads (beams and columns)
- 3. Design for lateral forces (horizontal diaphragms and shearwalls)
- 4. Connection design (including the overall tying together of the vertical- and lateral-force-resisting systems)

The need for such an overall approach to the subject became clear from experience gained in teaching timber design at the undergraduate and graduate levels.

This text pulls together the design of the various elements into a single reference. A large number of practical design examples are provided throughout the text. Because of their widespread usage, buildings naturally form the basis of the majority of these examples. However, the principles of member design and diaphragm design have application to other structures (such as concrete formwork and falsework).

This book relies on practical, current industry literature as the basis for structural design. This includes publications of the American Wood Council (AWC), the International Code Council (ICC), the American Society of Civil Engineers (ASCE), APA—The Engineered Wood Association, and the American Institute of Timber Construction (AITC).

In the writing of this text, an effort has been made to conform to the spirit and intent of the reference documents. The interpretations are those of the authors and are intended to reflect current structural design practice. The material presented is suggested as a guide only, and final design responsibility lies with the structural engineer.

The seventh edition of this book was prompted by four major developments:

- 1. Publication of the 2012 National Design Specification for Wood Construction (NDS).
- 2. Publication of the 2008 Special Design Provisions for Wind and Seismic (SDPWS) Supplement to the NDS.
- 3. Publication and adoption nationally of the 2012 International Building Code.
- 4. Publication of updated load standards in the 2010 edition of *Minimum Design Loads for Buildings and Other Structures* (ASCE 7-10).

The *National Design Specification* (NDS) is published by the American Wood Council (AWC) and represents the latest structural design recommendations by the wood industry. The 2012 NDS presents both traditional allowable stress design (ASD) provisions as well as new load and resistance factor design (LRFD) provisions. LRFD provisions were first introduced to the NDS in the 2005 edition. As such, the NDS is considered a dual-format design specification. While ASD has been and may continue to be the method of choice for many designers of wood buildings, the acceptance and use of LRFD for wood design is increasing.

The 2012 ASD/LRFD Manual for Engineered Wood Construction includes guidelines and provisions helpful for wood engineering design. It includes design information for sawn lumber, structural glued laminated timber, structural-use panels, shearwalls and diaphragms, poles and piles, I-joists, structural composite lumber, and structural connections (nails, bolts, screws, timber rivets, shear plate and split ring connectors). The Manual was first introduced in 1999 for the 1997 NDS, and has evolved into a useful design support document.

The *International Building Code* (IBC) is a product of the International Code Council (ICC). The ICC brought together the three regional model building code organizations to develop and administer a single national building code. The first edition of the IBC was published in 2000, and now nearly all regions of the United States have adopted all or part of the IBC at either the state or local level.

Traditionally, the NDS has been based on the principles of what is termed allowable stress design (ASD). In ASD, allowable stresses of a material are compared to calculated working stresses resulting from service loads. In the 1990s, the wood industry and design community completed the development of a load and resistance factor design (LRFD) specification for wood construction. In LRFD, adjusted nominal capacities (resistance) are compared to the effect of factored loads. The factors are developed for both resistance and loads such that uncertainty and consequence of failure are explicitly recognized. The LRFD approach to wood design is now included in the NDS. This seventh edition of Design of Wood Structures presents both ASD and LRFD guidelines as provided in the NDS. In many examples, both ASD and LRFD approaches are presented to allow the reader a direct, side-by-side comparison of the two methods.

Questions or comments about the text or examples may be addressed to any of the authors. Direct any correspondence to:

Prof. Emeritus Donald E. Breyer Department of Engineering Technology California State Polytechnic University 3801 West Temple Avenue Pomona, CA 91768

Prof. Kenneth J. Fridlev Department of Civil, Construction, and **Environmental Engineering** University of Alabama Box 870205 Tuscaloosa, AL 35487-0205

Ms. Kelly E. Cobeen Wiss, Janney, Elstner Associates, Inc. 2000 Powell St., Suite 1650 Emeryville, CA 94608

Prof. David G. Pollock Department of Mechanical and Civil Engineering George Fox University 414 N. Meridian St., #6142 Newberg, OR 97132

Acknowledgment and appreciation for help in writing this text are given to our numerous colleagues in the wood design profession. Suggestions and information were obtained from many engineers and suppliers, and their help is gratefully recognized. We express particular gratitude to Rosdinah Baharin for her extensive work in converting figures and diagrams to electronic format. We also acknowledge John Henry of the International Code Council (ICC) for reviewing the entire manuscript prior to publication. Finally, our sincere thanks to Bridget Thoreson, Michael McCabe, Joy Bramble, and Larry Hager for shepherding various editions of this textbook through the publication process at McGraw-Hill.

Dedication

To our families:

Matthew, Kerry, Daniel, and Sarah Matthew Paula, Justin, Connor, and Alison Lynn, Sarah, and Will

> Donald E. Breyer, P.E. Kelly E. Cobeen, S.E. Kenneth J. Fridley, Ph.D. David G. Pollock, Ph.D., P.E.