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LOWING fluids in HVAC&R systems can transfer heat, mass,Fand momentum. This chapter introduces the basics of fluid
mechanics related to HVAC processes, reviews pertinent flow pro-
cesses, and presents a general discussion of single-phase fluid flow
analysis.

FLUID PROPERTIES
Solids and fluids react differently to shear stress: solids deform

only a finite amount, whereas fluids deform continuously until the
stress is removed. Both liquids and gases are fluids, although the
natures of their molecular interactions differ strongly in both degree
of compressibility and formation of a free surface (interface) in liq-
uid. In general, liquids are considered incompressible fluids; gases
may range from compressible to nearly incompressible. Liquids
have unbalanced molecular cohesive forces at or near the surface
(interface), so the liquid surface tends to contract and has properties
similar to a stretched elastic membrane. A liquid surface, therefore,
is under tension (surface tension).

Fluid motion can be described by several simplified models. The
simplest is the ideal-fluid model, which assumes that the fluid has
no resistance to shearing. Ideal fluid flow analysis is well developed
[e.g., Schlichting (1979)], and may be valid for a wide range of
applications.

Viscosity is a measure of a fluid’s resistance to shear. Viscous
effects are taken into account by categorizing a fluid as either New-
tonian or non-Newtonian. In Newtonian fluids, the rate of deforma-
tion is directly proportional to the shearing stress; most fluids in the
HVAC industry (e.g., water, air, most refrigerants) can be treated as
Newtonian. In non-Newtonian fluids, the relationship between the
rate of deformation and shear stress is more complicated.

Density
The density  of a fluid is its mass per unit volume. The densities

of air and water (Fox et al. 2004) at standard indoor conditions of
68°F and 14.696 psi (sea-level atmospheric pressure) are

water = 62.4 lbm/ft3

air = 0.0753 lbm/ft3

Viscosity
Viscosity is the resistance of adjacent fluid layers to shear. A clas-

sic example of shear is shown in Figure 1, where a fluid is between
two parallel plates, each of area A separated by distance Y. The bot-
tom plate is fixed and the top plate is moving, which induces a shear-
ing force in the fluid. For a Newtonian fluid, the tangential force F
per unit area required to slide one plate with velocity V  parallel to the
other is proportional to V/Y:

F/A =  (V/Y ) (1)

where the proportionality factor  is the absolute or dynamic vis-
cosity of the fluid. The ratio of F to A is the shearing stress , and
V/Y is the lateral velocity gradient (Figure 1A). In complex flows,
velocity and shear stress may vary across the flow field; this is
expressed by

 =  (2)

The velocity gradient associated with viscous shear for a simple case
involving flow velocity in the x direction but of varying magnitude in
the y direction is illustrated in Figure 1B.

Absolute viscosity  depends primarily on temperature. For
gases (except near the critical point), viscosity increases with the
square root of the absolute temperature, as predicted by the kinetic
theory of gases. In contrast, a liquid’s viscosity decreases as temper-
ature increases. Absolute viscosities of various fluids are given in
Chapter 33.

Absolute viscosity has dimensions of force  time/length2. At
standard indoor conditions, the absolute viscosities of water and dry
air (Fox et al. 2004) are

 water = 6.76  10–4 lbm/ft·s = 2.10  10–5 lbf ·s/ft2

 air = 1.22  10–5 lbm/ft·s = 3.79  10–7 lbf ·s/ft2

Another common unit of viscosity is the centipoise (1 centipoise =
1 g/(s m) = 1 mPa s). At standard conditions, water has a viscosity
close to 1.0 centipoise.

In fluid dynamics, kinematic viscosity  is sometimes used in
lieu of absolute or dynamic viscosity. Kinematic viscosity is the ratio
of absolute viscosity to density:

 =  /

At standard indoor conditions, the kinematic viscosities of water
and dry air (Fox et al. 2004) are

 water = 1.08  10–5 ft2/s

 air = 1.62  10–4 ft2/s

The stoke (1 cm2/s) and centistoke (1 mm2/s) are common units
for kinematic viscosity.

The preparation of this chapter is assigned to TC 1.3, Heat Transfer and
Fluid Flow.

Fig. 1 Velocity Profiles and Gradients in Shear Flows
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Note that the inch-pound system of units often requires the con-
version factor gc = 32.1740 lbm·ft/s2·lbf to make some equations
containing lbf and lbm dimensionally consistent. The conversion
factor gc is not shown in the equations, but is included as needed.

BASIC RELATIONS OF FLUID DYNAMICS

This section discusses fundamental principles of fluid flow for
constant-property, homogeneous, incompressible fluids and intro-
duces fluid dynamic considerations used in most analyses.

Continuity in a Pipe or Duct
Conservation of mass applied to fluid flow in a conduit requires

that mass not be created or destroyed. Specifically, the mass flow
rate into a section of pipe must equal the mass flow rate out of that
section of pipe if no mass is accumulated or lost (e.g., from leak-
age). This requires that

dA = constant (3)

where is mass flow rate across the area normal to flow, v is fluid
velocity normal to differential area dA, and  is fluid density. Both
 and v may vary over the cross section A of the conduit. When flow
is effectively incompressible ( = constant) in a pipe or duct flow
analysis, the average velocity is then V = (1/A)v dA, and the mass
flow rate can be written as

 = VA (4)

or

Q =  = AV (5)

where Q is volumetric flow rate.

Bernoulli Equation and Pressure Variation in
Flow Direction

The Bernoulli equation is a fundamental principle of fluid flow
analysis. It involves the conservation of momentum and energy
along a streamline; it is not generally applicable across streamlines.
Development is fairly straightforward. The first law of thermody-
namics can apply to both mechanical flow energies (kinetic and
potential energy) and thermal energies.

The change in energy content E per unit mass of flowing fluid
is a result of the work per unit mass w done on the system plus the
heat per unit mass q absorbed or rejected:

E = w + q (6)

Fluid energy is composed of kinetic, potential (because of elevation
z), and internal (u) energies. Per unit mass of fluid, the energy
change relation between two sections of the system is

 = EM –  + q (7)

where the work terms are (1) external work EM from a fluid
machine (EM is positive for a pump or blower) and (2) flow work
p/ (where p = pressure), and g is the gravitational constant. Re-
arranging, the energy equation can be written as the generalized
Bernoulli equation:

  = EM + q (8)

The expression in parentheses in Equation (8) is the sum of the
kinetic energy, potential energy, internal energy, and flow work per

unit mass flow rate. In cases with no work interaction, no heat trans-
fer, and no viscous frictional forces that convert mechanical energy
into internal energy, this expression is constant and is known as the
Bernoulli constant B:

 + gz + = B (9)

Alternative forms of this relation are obtained through multiplica-
tion by  or division by g:

p +  + gz = B (10)

(11)

where  = g is the weight density ( = weight/volume versus  =
mass/volume). Note that Equations (9) to (11) assume no frictional
losses.

The units in the first form of the Bernoulli equation [Equation
(9)] are energy per unit mass; in Equation (10), energy per unit vol-
ume; in Equation (11), energy per unit weight, usually called head.
Note that the units for head reduce to just length (i.e., ft · lbf/lbf to ft).
In gas flow analysis, Equation (10) is often used, and gz is negli-
gible. Equation (10) should be used when density variations occur.
For liquid flows, Equation (11) is commonly used. Identical results
are obtained with the three forms if the units are consistent and flu-
ids are homogeneous.

Many systems of pipes, ducts, pumps, and blowers can be con-
sidered as one-dimensional flow along a streamline (i.e., variation
in velocity across the pipe or duct is ignored, and local velocity v =
average velocity V ). When v varies significantly across the cross
section, the kinetic energy term in the Bernoulli constant B is
expressed as V 2/2, where the kinetic energy factor ( > 1)
expresses the ratio of the true kinetic energy of the velocity profile
to that of the average velocity. For laminar flow in a wide rectangu-
lar channel,  = 1.54, and in a pipe,  = 2.0. For turbulent flow in a
duct,   1.

Heat transfer q may often be ignored. Conversion of mechanical
energy to internal energy u may be expressed as a loss EL. The
change in the Bernoulli constant (B = B2 – B1) between stations 1
and 2 along the conduit can be expressed as

+ EM – EL = (12)

or, by dividing by g, in the form

+ HM – HL = (13)

Note that Equation (12) has units of energy per mass, whereas
each term in Equation (13) has units of energy per weight, or head.
The terms EM and EL are defined as positive, where gHM = EM rep-
resents energy added to the conduit flow by pumps or blowers. A
turbine or fluid motor thus has a negative HM or EM. Note the sim-
plicity of Equation (13); the total head at station 1 (pressure head
plus velocity head plus elevation head) plus the head added by a
pump (HM) minus the head lost through friction (HL) is the total
head at station 2.

Laminar Flow
When real-fluid effects of viscosity or turbulence are included,

the continuity relation in Equation (5) is not changed, but V must be
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evaluated from the integral of the velocity profile, using local veloc-
ities. In fluid flow past fixed boundaries, velocity at the boundary is
zero, velocity gradients exist, and shear stresses are produced. The
equations of motion then become complex, and exact solutions are
difficult to find except in simple cases for laminar flow between flat
plates, between rotating cylinders, or within a pipe or tube.

For steady, fully developed laminar flow between two parallel
plates (Figure 2), shear stress varies linearly with distance y from
the centerline (transverse to the flow; y = 0 in the center of the chan-
nel). For a wide rectangular channel 2b tall,  can be written as

 = w =  (14)

where w is wall shear stress [b(dp/ds)], and s is flow direction. Be-
cause velocity is zero at the wall ( y = b), Equation (14) can be inte-
grated to yield

v = (15)

The resulting parabolic velocity profile in a wide rectangular
channel is commonly called Poiseuille flow. Maximum velocity
occurs at the centerline (y = 0), and the average velocity V is 2/3 of
the maximum velocity. From this, the longitudinal pressure drop in
terms of V can be written as

(16)

A parabolic velocity profile can also be derived for a pipe of
radius R. V is 1/2 of the maximum velocity, and the pressure drop
can be written as

(17)

Turbulence
Fluid flows are generally turbulent, involving random perturba-

tions or fluctuations of the flow (velocity and pressure), character-
ized by an extensive hierarchy of scales or frequencies (Robertson
1963). Flow disturbances that are not chaotic but have some degree
of periodicity (e.g., the oscillating vortex trail behind bodies) have
been erroneously identified as turbulence. Only flows involving ran-
dom perturbations without any order or periodicity are turbulent;
velocity in such a flow varies with time or locale of measurement
(Figure 3).

Turbulence can be quantified statistically. The velocity most
often used is the time-averaged velocity. The strength of turbulence
is characterized by the root mean square (RMS) of the instantaneous
variation in velocity about this mean. Turbulence causes the fluid to
transfer momentum, heat, and mass very rapidly across the flow.

Laminar and turbulent flows can be differentiated using the
Reynolds number Re, which is a dimensionless relative ratio of
inertial forces to viscous forces:

ReL = VL / (18)

where L is the characteristic length scale and  is the kinematic vis-
cosity of the fluid. In flow through pipes, tubes, and ducts, the char-
acteristic length scale is the hydraulic diameter Dh, given by

Dh = 4A/Pw (19)

where A is the cross-sectional area of the pipe, duct, or tube, and Pw
is the wetted perimeter.

For a round pipe, Dh equals the pipe diameter. In general, laminar
flow in pipes or ducts exists when the Reynolds number (based on
Dh) is less than 2300. Fully turbulent flow exists when ReDh >
10,000. For 2300 < ReDh

 < 10,000, transitional flow exists, and pre-
dictions are unreliable.

BASIC FLOW PROCESSES

Wall Friction
At the boundary of real-fluid flow, the relative tangential velocity

at the fluid surface is zero. Sometimes in turbulent flow studies,
velocity at the wall may appear finite and nonzero, implying a fluid
slip at the wall. However, this is not the case; the conflict results
from difficulty in velocity measurements near the wall (Goldstein
1938). Zero wall velocity leads to high shear stress near the wall
boundary, which slows adjacent fluid layers. Thus, a velocity profile
develops near a wall, with velocity increasing from zero at the wall
to an exterior value within a finite lateral distance.

Laminar and turbulent flow differ significantly in their velocity
profiles. Turbulent flow profiles are flat and laminar profiles are
more pointed (Figure 4). As discussed, fluid velocities of the turbu-
lent profile near the wall must drop to zero more rapidly than those
of the laminar profile, so shear stress and friction are much greater
in turbulent flow. Fully developed conduit flow may be character-
ized by the pipe factor, which is the ratio of average to maximum
(centerline) velocity. Viscous velocity profiles result in pipe factors
of 0.667 and 0.50 for wide rectangular and axisymmetric conduits.
Figure 5 indicates much higher values for rectangular and circular
conduits for turbulent flow. Because of the flat velocity profiles, the
kinetic energy factor  in Equations (12) and (13) ranges from 1.01
to 1.10 for fully developed turbulent pipe flow.

Boundary Layer
The boundary layer is the region close to the wall where wall fric-

tion affects flow. Boundary layer thickness (usually denoted by  is
thin compared to downstream flow distance. For external flow over
a body, fluid velocity varies from zero at the wall to a maximum at
distance  from the wall. Boundary layers are generally laminar near
the start of their formation but may become turbulent downstream.

A significant boundary-layer occurrence exists in a pipeline or
conduit following a well-rounded entrance (Figure 6). Layers grow
from the walls until they meet at the center of the pipe. Near the start
of the straight conduit, the layer is very thin and most likely laminar,

Fig. 2 Dimensions for Steady, Fully Developed 
Laminar Flow Equations
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so the uniform velocity core outside has a velocity only slightly
greater than the average velocity. As the layer grows in thickness,
the slower velocity near the wall requires a velocity increase in the
uniform core to satisfy continuity. As flow proceeds, the wall layers
grow (and centerline velocity increases) until they join, after an
entrance length Le. Applying the Bernoulli relation of Equation
(10) to core flow indicates a decrease in pressure along the layer.
Ross (1956) shows that, although the entrance length Le is many
diameters, the length in which pressure drop significantly exceeds
that for fully developed flow is on the order of 10 hydraulic diame-
ters for turbulent flow in smooth pipes.

In more general boundary-layer flows, as with wall layer devel-
opment in a diffuser or for the layer developing along the surface of
a strut or turning vane, pressure gradient effects can be severe and
may even lead to boundary layer separation. When the outer flow
velocity (v1 in Figure 7) decreases in the flow direction, an adverse
pressure gradient can cause separation, as shown in the figure.
Downstream from the separation point, fluid backflows near the
wall. Separation is caused by frictional velocity (thus local kinetic
energy) reduction near the wall. Flow near the wall no longer has
energy to move into the higher pressure imposed by the decrease in
v1 at the edge of the layer. The locale of this separation is difficult to

predict, especially for the turbulent boundary layer. Analyses verify
the experimental observation that a turbulent boundary layer is less
subject to separation than a laminar one because of its greater
kinetic energy.

Flow Patterns with Separation
In technical applications, flow with separation is common and

often accepted if it is too expensive to avoid. Flow separation may
be geometric or dynamic. Dynamic separation is shown in Figure 7.
Geometric separation (Figures 8 and 9) results when a fluid stream
passes over a very sharp corner, as with an orifice; the fluid gener-
ally leaves the corner irrespective of how much its velocity has been
reduced by friction.

For geometric separation in orifice flow (Figure 8), the outer
streamlines separate from the sharp corners and, because of fluid
inertia, contract to a section smaller than the orifice opening. The
smallest section is known as the vena contracta and generally has
a limiting area of about six-tenths of the orifice opening. After the
vena contracta, the fluid stream expands rather slowly through

Fig. 4 Velocity Profiles of Flow in Pipes

Fig. 5 Pipe Factor for Flow in Conduits

Fig. 6 Flow in Conduit Entrance Region

Fig. 7 Boundary Layer Flow to Separation

Fig. 8 Geometric Separation, Flow Development, and 
Loss in Flow Through Orifice

Fig. 9 Examples of Geometric Separation Encountered in 
Flows in Conduits
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turbulent or laminar interaction with the fluid along its sides. Out-
side the jet, fluid velocity is comparatively small. Turbulence helps
spread out the jet, increases losses, and brings the velocity distri-
bution back to a more uniform profile. Finally, downstream, the
velocity profile returns to the fully developed flow of Figure 4. The
entrance and exit profiles can profoundly affect the vena contracta
and pressure drop (Coleman 2004).

Other geometric separations (Figure 9) occur in conduits at sharp
entrances, inclined plates or dampers, or sudden expansions. For
these geometries, a vena contracta can be identified; for sudden
expansion, its area is that of the upstream contraction. Ideal-fluid
theory, using free streamlines, provides insight and predicts contrac-
tion coefficients for valves, orifices, and vanes (Robertson 1965).
These geometric flow separations produce large losses. To expand a
flow efficiently or to have an entrance with minimum losses, design
the device with gradual contours, a diffuser, or a rounded entrance.

Flow devices with gradual contours are subject to separation that
is more difficult to predict, because it involves the dynamics of
boundary-layer growth under an adverse pressure gradient rather
than flow over a sharp corner. A diffuser is used to reduce the loss
in expansion; it is possible to expand the fluid some distance at a
gentle angle without difficulty, particularly if the boundary layer is
turbulent. Eventually, separation may occur (Figure 10), which is
frequently asymmetrical because of irregularities. Downstream
flow involves flow reversal (backflow) and excess losses. Such sep-
aration is commonly called stall (Kline 1959). Larger expansions
may use splitters that divide the diffuser into smaller sections that
are less likely to have separations (Moore and Kline 1958). Another
technique for controlling separation is to bleed some low-velocity
fluid near the wall (Furuya et al. 1976). Alternatively, Heskested
(1970) shows that suction at the corner of a sudden expansion has a
strong positive effect on geometric separation.

Drag Forces on Bodies or Struts
Bodies in moving fluid streams are subjected to appreciable fluid

forces or drag. Conventionally, the drag force FD on a body can be
expressed in terms of a drag coefficient CD:

FD = CDA (20)

where A is the projected (normal to flow) area of the body. The drag
coefficient CD is a strong function of the body’s shape and angularity,
and the Reynolds number of the relative flow in terms of the body’s
characteristic dimension.

For Reynolds numbers of 103 to 105, the CD of most bodies is con-
stant because of flow separation, but above 105, the CD of rounded
bodies drops suddenly as the surface boundary layer undergoes
transition to turbulence. Typical CD values are given in Table 1;
Hoerner (1965) gives expanded values.

Nonisothermal Effects
When appreciable temperature variations exist, the primary fluid

properties (density and viscosity) may no longer assumed to be con-
stant, but vary across or along the flow. The Bernoulli equation
[Equations (9) to (11)] must be used, because volumetric flow is not
constant. With gas flows, the thermodynamic process involved must
be considered. In general, this is assessed using Equation (9), writ-
ten as

 + gz = B (21)

Effects of viscosity variations also appear. In nonisothermal laminar
flow, the parabolic velocity profile (see Figure 4) is no longer valid.
In general, for gases, viscosity increases with the square root of
absolute temperature; for liquids, viscosity decreases with increas-
ing temperature. This results in opposite effects.

For fully developed pipe flow, the linear variation in shear stress
from the wall value w to zero at the centerline is independent of the
temperature gradient. In the section on Laminar Flow,  is defined
as  = ( y/b) w , where y is the distance from the centerline and 2b
is the wall spacing. For pipe radius R = D/2 and distance from the
wall y = R – r (Figure 11), then  = w(R – y)/R. Then, solving
Equation (2) for the change in velocity yields

dv = dy = – r dr (22)

When fluid viscosity is lower near the wall than at the center (be-
cause of external heating of liquid or cooling of gas by heat transfer
through the pipe wall), the velocity gradient is steeper near the wall
and flatter near the center, so the profile is generally flattened. When

Fig. 10 Separation in Flow in Diffuser
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Body Shape 103 < Re < 2  105 Re > 3  105

Sphere 0.36 to 0.47 ~0.1
Disk 1.12 1.12
Streamlined strut 0.1 to 0.3  < 0.1
Circular cylinder 1.0 to 1.1 0.35
Elongated rectangular strut 1.0 to 1.2 1.0 to 1.2
Square strut ~2.0 ~2.0
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Fig. 11 Effect of Viscosity Variation on Velocity Profile of 
Laminar Flow in Pipe
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liquid is cooled or gas is heated, the velocity profile is more pointed
for laminar flow (Figure 11). Calculations for such flows of gases
and liquid metals in pipes are in Deissler (1951). Occurrences in tur-
bulent flow are less apparent than in laminar flow. If enough heating
is applied to gaseous flows, the viscosity increase can cause rever-
sion to laminar flow.

Buoyancy effects and the gradual approach of the fluid temper-
ature to equilibrium with that outside the pipe can cause consider-
able variation in the velocity profile along the conduit. Colborne and
Drobitch (1966) found the pipe factor for upward vertical flow of
hot air at a Re < 2000 reduced to about 0.6 at 40 diameters from the
entrance, then increased to about 0.8 at 210 diameters, and finally
decreased to the isothermal value of 0.5 at the end of 320 diameters.

FLOW ANALYSIS

Fluid flow analysis is used to correlate pressure changes with
flow rates and the nature of the conduit. For a given pipeline, either
the pressure drop for a certain flow rate, or the flow rate for a certain
pressure difference between the ends of the conduit, is needed. Flow
analysis ultimately involves comparing a pump or blower to a con-
duit piping system for evaluating the expected flow rate.

Generalized Bernoulli Equation
Internal energy differences are generally small, and usually the

only significant effect of heat transfer is to change the density . For
gas or vapor flows, use the generalized Bernoulli equation in the
pressure-over-density form of Equation (12), allowing for the ther-
modynamic process in the pressure-density relation:

 + EM = 2  + EL (23)

Elevation changes involving z are often negligible and are dropped.
The pressure form of Equation (10) is generally unacceptable when
appreciable density variations occur, because the volumetric flow
rate differs at the two stations. This is particularly serious in friction-
loss evaluations where the density usually varies over considerable
lengths of conduit (Benedict and Carlucci 1966). When the flow is
essentially incompressible, Equation (20) is satisfactory.

Example 1. Specify a blower to produce isothermal airflow of 400 cfm
through a ducting system (Figure 12). Accounting for intake and fitting
losses, equivalent conduit lengths are 60 and 165 ft, and flow is isother-
mal. Head at the inlet (station 1) and following the discharge (station
4), where velocity is zero, is the same. Frictional losses HL are evalu-
ated as 24.5 ft of air between stations 1 and 2, and 237 ft between sta-
tions 3 and 4.

Solution: The following form of the generalized Bernoulli relation is
used in place of Equation (12), which also could be used:

(p1/1g) + 1(V 2
1 /2g) + z1 + HM 

= ( p2/2g) + 2(V 2
2/2g) + z2 + HL (24)

The term V 2
1 /2g can be calculated as follows:

A1 =  = 0.44 ft2

V1 = Q/A1 = /0.44 ft2 = 15.1 ft/s

V 2
1 /2g = (15.1)2/2(32) = 3.56 ft (25)

The term V 2
2 /2g can be calculated in a similar manner.

In Equation (24), HM is evaluated by applying the relation between
any two points on opposite sides of the blower. Because conditions at
stations 1 and 4 are known, they are used, and the location-specifying
subscripts on the right side of Equation (24) are changed to 4. Note that
p1 = p4 = p, 1 = 4 = , and V1 = V4 = 0. Thus,

(p/g) + 0 + 2 + HM = (p/g) + 0 + 10 + (24.5 + 237) (26)

so HM = 269.5 ft of air. For standard air, this corresponds to 3.89 in. of
water.

The head difference measured across the blower (between stations
2 and 3) is often taken as HM. It can be obtained by calculating the
static pressure at stations 2 and 3. Applying Equation (24) successively
between stations 1 and 2 and between 3 and 4 gives

( p1/g) + 0 + 2 + 0 = ( p2/g) + (1.06  3.56) + 0 + 24.5 

( p3/g) + (1.03  9.70) + 0 + 0 = ( p4/g) + 0 + 10 + 237 (27)

where  just ahead of the blower is taken as 1.06, and just after the
blower as 1.03; the latter value is uncertain because of possible uneven
discharge from the blower. Static pressures p1 and p4 may be taken as
zero gage. Thus,

p2/g = –26.2 ft of air

p3/g = 237 ft of air (28)

The difference between these two numbers is 263.2 ft, which is
not the HM calculated after Equation (24) as 269.5 ft. The apparent
discrepancy results from ignoring velocity at stations 2 and 3. Actu-
ally, HM is

HM = ( p3/g) + 3(V 2
3 /2g) – [( p2/g) + 2( V 2

2 /2g)]

= 237 + (1.03  9.70) – [–26.2 + (1.06  3.54)]
= 247 – (–22.5) = 269.5 ft of air (29)

The required blower head is the same, no matter how it is evaluated.
It is the specific energy added to the system by the machine. Only when
the conduit size and velocity profiles on both sides of the machine are
the same is EM or HM simply found from p = p3 – p2.

Conduit Friction
The loss term EL or HL of Equation (12) or (13) accounts for

friction caused by conduit-wall shearing stresses and losses from
conduit-section changes. HL is the head loss (i.e., loss of energy per
unit weight).

In real-fluid flow, a frictional shear occurs at bounding walls,
gradually influencing flow further away from the boundary. A lateral
velocity profile is produced and flow energy is converted into heat
(fluid internal energy), which is generally unrecoverable (a loss).
This loss in fully developed conduit flow is evaluated using the
Darcy-Weisbach equation:

(30)

where L is the length of conduit of diameter D and f is the Darcy-
Weisbach friction factor. Sometimes a numerically different
relation is used with the Fanning friction factor (1/4 of the Darcy
friction factor f ). The value of f  is nearly constant for turbulent flow,
varying only from about 0.01 to 0.05.
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